Distributionally Robust Optimization with Multimodal Decision-Dependent Ambiguity Sets

We consider a two-stage distributionally robust optimization (DRO) model with multimodal uncertainty, where both the mode probabilities and uncertainty distributions could be affected by the first-stage decisions. To address this setting, we propose a generic framework by introducing a \(\phi\)-dive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Yu, Xian, Beste Basciftci
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a two-stage distributionally robust optimization (DRO) model with multimodal uncertainty, where both the mode probabilities and uncertainty distributions could be affected by the first-stage decisions. To address this setting, we propose a generic framework by introducing a \(\phi\)-divergence based ambiguity set to characterize the decision-dependent mode probabilities and further consider both moment-based and Wasserstein distance-based ambiguity sets to characterize the uncertainty distribution under each mode. We identify two special \(\phi\)-divergence examples (variation distance and \(\chi^2\)-distance) and provide specific forms of decision dependence relationships under which we can derive tractable reformulations. Furthermore, we investigate the benefits of considering multimodality in a DRO model compared to a single-modal counterpart through an analytical analysis. We provide a computational study over the facility location problem to illustrate our results, which demonstrate that omission of multimodality and decision-dependent uncertainties within DRO frameworks result in inadequately performing solutions with worse in-sample and out-of-sample performances under various settings.
ISSN:2331-8422