Power-Efficiency Constraint for Chemical Motors

The mechanical movement driven by chemical gradients provides the primordial energy for biological functions. Its thermodynamic properties remains inclusive, especially for a dynamical change of energy demand in biological systems. In this article, we obtain a constraint relation between the changin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Ruo-Xun Zhai, Dong, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanical movement driven by chemical gradients provides the primordial energy for biological functions. Its thermodynamic properties remains inclusive, especially for a dynamical change of energy demand in biological systems. In this article, we obtain a constraint relation between the changing output power and the conversion efficiency for a chemically fuelled rotary motor analogous to the \(\mathrm{F}_{0}\)-motor of ATPase. We find the efficiency at maximum power is half of the maximum quasi-static efficiency. These findings shall aid in the understanding of natural chemical engines and inspire the manual design and control of chemically fuelled microscale engines.
ISSN:2331-8422