Structure-preserving particle methods for the Landau collision operator using the metriplectic framework
We present a novel family of particle discretisation methods for the nonlinear Landau collision operator. We exploit the metriplectic structure underlying the Vlasov-Maxwell-Landau system in order to obtain disretisation schemes that automatically preserve mass, momentum, and energy, warrant monoton...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel family of particle discretisation methods for the nonlinear Landau collision operator. We exploit the metriplectic structure underlying the Vlasov-Maxwell-Landau system in order to obtain disretisation schemes that automatically preserve mass, momentum, and energy, warrant monotonic dissipation of entropy, and are thus guaranteed to respect the laws of thermodynamics. In contrast to recent works that used radial basis functions and similar methods for regularisation, here we use an auxiliary spline or finite element representation of the distribution function to this end. Discrete gradient methods are employed to guarantee the aforementioned properties in the time discrete domain as well. |
---|---|
ISSN: | 2331-8422 |