Private graph colouring with limited defectiveness
Differential privacy is the gold standard in the problem of privacy preserving data analysis, which is crucial in a wide range of disciplines. Vertex colouring is one of the most fundamental questions about a graph. In this paper, we study the vertex colouring problem in the differentially private s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Differential privacy is the gold standard in the problem of privacy preserving data analysis, which is crucial in a wide range of disciplines. Vertex colouring is one of the most fundamental questions about a graph. In this paper, we study the vertex colouring problem in the differentially private setting. To be edge-differentially private, a colouring algorithm needs to be defective: a colouring is d-defective if a vertex can share a colour with at most d of its neighbours. Without defectiveness, the only differentially private colouring algorithm needs to assign n different colours to the n different vertices. We show the following lower bound for the defectiveness: a differentially private c-edge colouring algorithm of a graph of maximum degree {\Delta} > 0 has defectiveness at least d = {\Omega} (log n / (log c+log {\Delta})). We also present an {\epsilon}-differentially private algorithm to {\Theta} ( {\Delta} / log n + 1 / {\epsilon})-colour a graph with defectiveness at most {\Theta}(log n). |
---|---|
ISSN: | 2331-8422 |