Hybrid Zeolitic Imidazolate Framework‐Derived Co3Mo/Mo2C Heterostructure for Enhanced Oxygen Evolution Reaction

Constructing heterostructures is an efficient strategy to develop high‐performance and robust electrocatalysts for oxygen evolution reaction (OER). Herein, an ion‐impregnation method and an environmentally friendly in situ carbonization strategy are successively employed to fabricate a novel Co3Mo/M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-05, Vol.34 (18), p.n/a
Hauptverfasser: Wang, Xiao‐Li, Sun, Liming, Yang, Lei, Zhao, Jianwei, Xu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Advanced functional materials
container_volume 34
creator Wang, Xiao‐Li
Sun, Liming
Yang, Lei
Zhao, Jianwei
Xu, Qiang
description Constructing heterostructures is an efficient strategy to develop high‐performance and robust electrocatalysts for oxygen evolution reaction (OER). Herein, an ion‐impregnation method and an environmentally friendly in situ carbonization strategy are successively employed to fabricate a novel Co3Mo/Mo2C heterostructure anchored on nitrogen‐doped carbon (Co3Mo/Mo2C@NC). Thanks to the formation of heterostructure, the obtained Co3Mo/Mo2C@NC exhibits an enhanced catalytic performance toward OER with a low overpotential (282 mV @ 10 mA cm−2, 322 mV @ 50 mA cm−2, and 355 mV @100 mA cm−2) and robust stability (100 mA cm−2 for 200 h) in alkaline media. Detailed experimental results combined with theoretical calculations reveal the formation of a Co3Mo/Mo2C heterojunction interface can decrease the energy barrier of the rate‐determining step for intermediates during the OER process, thereby inherently enhancing the OER performance. This work presents a rational synthetic route for designing high‐performance heterostructures for energy conversion technologies. A novel molybdenum‐based hybrid, consisting of a Co3Mo/Mo2C heterostructure embedded in nitrogen‐doped carbon, is synthesized using an ion impregnation‐carbonization strategy, employing an ordered Zn, Mo‐based bimetal hybrid zeolitic imidazolate framework as the precursor. The resulting Co3Mo/Mo2C@NC exhibits enhanced electrocatalytic performance for OER with a small overpotential and satisfactory long‐term stability.
doi_str_mv 10.1002/adfm.202314247
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3049591088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049591088</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2337-9e467775eff4933d971ffabb0bdee953d7a6f36063c54e487c0b925824a33f4b3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFa3rgdcx85fMsmypK0ttBREQdwMk-SOpiaZdpK0xpWP4DP6JLZUurrnwsc58CF0S8k9JYQNdGbKe0YYp4IJeYZ6NKCBxwkLz0-Zvlyiq7peEUKl5KKHNtMucXmGX8EWeZOneFbmmf6yhW4AT5wuYWfdx-_3zwhcvoUMx5Yv7GBhWYyn0ICzdePatGkdYGMdHlfvukr33PKze4MKj7e2aJvcVvgRdHoI1-jC6KKGm__bR8-T8VM89ebLh1k8nHtrxrn0IhCBlNIHY0TEeRZJaoxOEpJkAJHPM6kDwwMS8NQXIEKZkiRifsiE5tyIhPfR3bF37eymhbpRK9u6aj-pOBGRH1EShnsqOlK7vIBOrV1eatcpStTBqTo4VSenajiaLE4f_wPlim8_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049591088</pqid></control><display><type>article</type><title>Hybrid Zeolitic Imidazolate Framework‐Derived Co3Mo/Mo2C Heterostructure for Enhanced Oxygen Evolution Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xiao‐Li ; Sun, Liming ; Yang, Lei ; Zhao, Jianwei ; Xu, Qiang</creator><creatorcontrib>Wang, Xiao‐Li ; Sun, Liming ; Yang, Lei ; Zhao, Jianwei ; Xu, Qiang</creatorcontrib><description>Constructing heterostructures is an efficient strategy to develop high‐performance and robust electrocatalysts for oxygen evolution reaction (OER). Herein, an ion‐impregnation method and an environmentally friendly in situ carbonization strategy are successively employed to fabricate a novel Co3Mo/Mo2C heterostructure anchored on nitrogen‐doped carbon (Co3Mo/Mo2C@NC). Thanks to the formation of heterostructure, the obtained Co3Mo/Mo2C@NC exhibits an enhanced catalytic performance toward OER with a low overpotential (282 mV @ 10 mA cm−2, 322 mV @ 50 mA cm−2, and 355 mV @100 mA cm−2) and robust stability (100 mA cm−2 for 200 h) in alkaline media. Detailed experimental results combined with theoretical calculations reveal the formation of a Co3Mo/Mo2C heterojunction interface can decrease the energy barrier of the rate‐determining step for intermediates during the OER process, thereby inherently enhancing the OER performance. This work presents a rational synthetic route for designing high‐performance heterostructures for energy conversion technologies. A novel molybdenum‐based hybrid, consisting of a Co3Mo/Mo2C heterostructure embedded in nitrogen‐doped carbon, is synthesized using an ion impregnation‐carbonization strategy, employing an ordered Zn, Mo‐based bimetal hybrid zeolitic imidazolate framework as the precursor. The resulting Co3Mo/Mo2C@NC exhibits enhanced electrocatalytic performance for OER with a small overpotential and satisfactory long‐term stability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202314247</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Electrocatalysts ; Energy conversion ; Heterojunctions ; heterostructure ; Heterostructures ; hybrid zeolitic imidazolate framework ; Metal-organic frameworks ; MOF derived ; oxygen evolution reaction ; Oxygen evolution reactions ; Robustness ; Zeolites</subject><ispartof>Advanced functional materials, 2024-05, Vol.34 (18), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2271-0535 ; 0000-0001-5385-9650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202314247$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202314247$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wang, Xiao‐Li</creatorcontrib><creatorcontrib>Sun, Liming</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Zhao, Jianwei</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><title>Hybrid Zeolitic Imidazolate Framework‐Derived Co3Mo/Mo2C Heterostructure for Enhanced Oxygen Evolution Reaction</title><title>Advanced functional materials</title><description>Constructing heterostructures is an efficient strategy to develop high‐performance and robust electrocatalysts for oxygen evolution reaction (OER). Herein, an ion‐impregnation method and an environmentally friendly in situ carbonization strategy are successively employed to fabricate a novel Co3Mo/Mo2C heterostructure anchored on nitrogen‐doped carbon (Co3Mo/Mo2C@NC). Thanks to the formation of heterostructure, the obtained Co3Mo/Mo2C@NC exhibits an enhanced catalytic performance toward OER with a low overpotential (282 mV @ 10 mA cm−2, 322 mV @ 50 mA cm−2, and 355 mV @100 mA cm−2) and robust stability (100 mA cm−2 for 200 h) in alkaline media. Detailed experimental results combined with theoretical calculations reveal the formation of a Co3Mo/Mo2C heterojunction interface can decrease the energy barrier of the rate‐determining step for intermediates during the OER process, thereby inherently enhancing the OER performance. This work presents a rational synthetic route for designing high‐performance heterostructures for energy conversion technologies. A novel molybdenum‐based hybrid, consisting of a Co3Mo/Mo2C heterostructure embedded in nitrogen‐doped carbon, is synthesized using an ion impregnation‐carbonization strategy, employing an ordered Zn, Mo‐based bimetal hybrid zeolitic imidazolate framework as the precursor. The resulting Co3Mo/Mo2C@NC exhibits enhanced electrocatalytic performance for OER with a small overpotential and satisfactory long‐term stability.</description><subject>Electrocatalysts</subject><subject>Energy conversion</subject><subject>Heterojunctions</subject><subject>heterostructure</subject><subject>Heterostructures</subject><subject>hybrid zeolitic imidazolate framework</subject><subject>Metal-organic frameworks</subject><subject>MOF derived</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Robustness</subject><subject>Zeolites</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFa3rgdcx85fMsmypK0ttBREQdwMk-SOpiaZdpK0xpWP4DP6JLZUurrnwsc58CF0S8k9JYQNdGbKe0YYp4IJeYZ6NKCBxwkLz0-Zvlyiq7peEUKl5KKHNtMucXmGX8EWeZOneFbmmf6yhW4AT5wuYWfdx-_3zwhcvoUMx5Yv7GBhWYyn0ICzdePatGkdYGMdHlfvukr33PKze4MKj7e2aJvcVvgRdHoI1-jC6KKGm__bR8-T8VM89ebLh1k8nHtrxrn0IhCBlNIHY0TEeRZJaoxOEpJkAJHPM6kDwwMS8NQXIEKZkiRifsiE5tyIhPfR3bF37eymhbpRK9u6aj-pOBGRH1EShnsqOlK7vIBOrV1eatcpStTBqTo4VSenajiaLE4f_wPlim8_</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Wang, Xiao‐Li</creator><creator>Sun, Liming</creator><creator>Yang, Lei</creator><creator>Zhao, Jianwei</creator><creator>Xu, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2271-0535</orcidid><orcidid>https://orcid.org/0000-0001-5385-9650</orcidid></search><sort><creationdate>20240502</creationdate><title>Hybrid Zeolitic Imidazolate Framework‐Derived Co3Mo/Mo2C Heterostructure for Enhanced Oxygen Evolution Reaction</title><author>Wang, Xiao‐Li ; Sun, Liming ; Yang, Lei ; Zhao, Jianwei ; Xu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2337-9e467775eff4933d971ffabb0bdee953d7a6f36063c54e487c0b925824a33f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrocatalysts</topic><topic>Energy conversion</topic><topic>Heterojunctions</topic><topic>heterostructure</topic><topic>Heterostructures</topic><topic>hybrid zeolitic imidazolate framework</topic><topic>Metal-organic frameworks</topic><topic>MOF derived</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Robustness</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiao‐Li</creatorcontrib><creatorcontrib>Sun, Liming</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Zhao, Jianwei</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiao‐Li</au><au>Sun, Liming</au><au>Yang, Lei</au><au>Zhao, Jianwei</au><au>Xu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Zeolitic Imidazolate Framework‐Derived Co3Mo/Mo2C Heterostructure for Enhanced Oxygen Evolution Reaction</atitle><jtitle>Advanced functional materials</jtitle><date>2024-05-02</date><risdate>2024</risdate><volume>34</volume><issue>18</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Constructing heterostructures is an efficient strategy to develop high‐performance and robust electrocatalysts for oxygen evolution reaction (OER). Herein, an ion‐impregnation method and an environmentally friendly in situ carbonization strategy are successively employed to fabricate a novel Co3Mo/Mo2C heterostructure anchored on nitrogen‐doped carbon (Co3Mo/Mo2C@NC). Thanks to the formation of heterostructure, the obtained Co3Mo/Mo2C@NC exhibits an enhanced catalytic performance toward OER with a low overpotential (282 mV @ 10 mA cm−2, 322 mV @ 50 mA cm−2, and 355 mV @100 mA cm−2) and robust stability (100 mA cm−2 for 200 h) in alkaline media. Detailed experimental results combined with theoretical calculations reveal the formation of a Co3Mo/Mo2C heterojunction interface can decrease the energy barrier of the rate‐determining step for intermediates during the OER process, thereby inherently enhancing the OER performance. This work presents a rational synthetic route for designing high‐performance heterostructures for energy conversion technologies. A novel molybdenum‐based hybrid, consisting of a Co3Mo/Mo2C heterostructure embedded in nitrogen‐doped carbon, is synthesized using an ion impregnation‐carbonization strategy, employing an ordered Zn, Mo‐based bimetal hybrid zeolitic imidazolate framework as the precursor. The resulting Co3Mo/Mo2C@NC exhibits enhanced electrocatalytic performance for OER with a small overpotential and satisfactory long‐term stability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202314247</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2271-0535</orcidid><orcidid>https://orcid.org/0000-0001-5385-9650</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-05, Vol.34 (18), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3049591088
source Wiley Online Library Journals Frontfile Complete
subjects Electrocatalysts
Energy conversion
Heterojunctions
heterostructure
Heterostructures
hybrid zeolitic imidazolate framework
Metal-organic frameworks
MOF derived
oxygen evolution reaction
Oxygen evolution reactions
Robustness
Zeolites
title Hybrid Zeolitic Imidazolate Framework‐Derived Co3Mo/Mo2C Heterostructure for Enhanced Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Zeolitic%20Imidazolate%20Framework%E2%80%90Derived%20Co3Mo/Mo2C%20Heterostructure%20for%20Enhanced%20Oxygen%20Evolution%20Reaction&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Xiao%E2%80%90Li&rft.date=2024-05-02&rft.volume=34&rft.issue=18&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202314247&rft_dat=%3Cproquest_wiley%3E3049591088%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049591088&rft_id=info:pmid/&rfr_iscdi=true