Hybrid Zeolitic Imidazolate Framework‐Derived Co3Mo/Mo2C Heterostructure for Enhanced Oxygen Evolution Reaction
Constructing heterostructures is an efficient strategy to develop high‐performance and robust electrocatalysts for oxygen evolution reaction (OER). Herein, an ion‐impregnation method and an environmentally friendly in situ carbonization strategy are successively employed to fabricate a novel Co3Mo/M...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-05, Vol.34 (18), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Constructing heterostructures is an efficient strategy to develop high‐performance and robust electrocatalysts for oxygen evolution reaction (OER). Herein, an ion‐impregnation method and an environmentally friendly in situ carbonization strategy are successively employed to fabricate a novel Co3Mo/Mo2C heterostructure anchored on nitrogen‐doped carbon (Co3Mo/Mo2C@NC). Thanks to the formation of heterostructure, the obtained Co3Mo/Mo2C@NC exhibits an enhanced catalytic performance toward OER with a low overpotential (282 mV @ 10 mA cm−2, 322 mV @ 50 mA cm−2, and 355 mV @100 mA cm−2) and robust stability (100 mA cm−2 for 200 h) in alkaline media. Detailed experimental results combined with theoretical calculations reveal the formation of a Co3Mo/Mo2C heterojunction interface can decrease the energy barrier of the rate‐determining step for intermediates during the OER process, thereby inherently enhancing the OER performance. This work presents a rational synthetic route for designing high‐performance heterostructures for energy conversion technologies.
A novel molybdenum‐based hybrid, consisting of a Co3Mo/Mo2C heterostructure embedded in nitrogen‐doped carbon, is synthesized using an ion impregnation‐carbonization strategy, employing an ordered Zn, Mo‐based bimetal hybrid zeolitic imidazolate framework as the precursor. The resulting Co3Mo/Mo2C@NC exhibits enhanced electrocatalytic performance for OER with a small overpotential and satisfactory long‐term stability. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202314247 |