Investigating Large-Scale RIS-Assisted Wireless Communications Using GNN

Channel estimation (CE) in reconfigurable intelligent surfaces (RIS)-assisted wireless communication systems is challenging when using traditional CE methods due to their computational intensity and inaccuracies, especially in large-scale RIS environments. These limitations directly impact the achie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2024-02, Vol.70 (1), p.811-818
Hauptverfasser: Lyu, Shuai, Peng, Limei, Chang, Shih Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Channel estimation (CE) in reconfigurable intelligent surfaces (RIS)-assisted wireless communication systems is challenging when using traditional CE methods due to their computational intensity and inaccuracies, especially in large-scale RIS environments. These limitations directly impact the achievable data rate, which relies heavily on accurate channel state information (CSI) obtained from CE. To overcome these challenges, we propose a novel approach that utilizes graph neural networks (GNN) with region-specific training models. The GNN is employed to obtain CSI for carefully selected regions in a given large-scale area of interest (AOI) using a trial-based method, where different system configurations and parameters are tried, and the achieved performance for different assessing region sizes is evaluated. This ensures that the chosen regions effectively act as representative samples for the entire AOI. By leveraging the GNN-based CEs for these selected regions, we can accurately predict the performance for users in any AOI region. Additionally, we optimize the placement of double RISs to further enhance system performance. Extensive simulations are conducted to validate our approach and demonstrate its effectiveness in achieving accurate system performance with reduced complexity in large-scale communication systems.
ISSN:0098-3063
1558-4127
DOI:10.1109/TCE.2023.3349153