Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range
The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship be...
Gespeichert in:
Veröffentlicht in: | Functional analysis and its applications 2023-12, Vol.57 (Suppl 1), p.17-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | Suppl 1 |
container_start_page | 17 |
container_title | Functional analysis and its applications |
container_volume | 57 |
creator | Mahfoudhi, Kamel |
description | The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the
-spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples. |
doi_str_mv | 10.1134/S0016266323050027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049304561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049304561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-fd230c0fdc5bbfe8ec67d2344f81ce0a60d016725141cb8419abcdbd610528553</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBIjMEP4BaJc8FOkzQ7oonHxMRrcK7S1EGdtrYk7YF_T6YhcUAcLEv-Hv5sxs4RLhFzebUCQC20zkUOCkAUB2yCqsgzI406ZJMdnO3wY3YS4xoATIF6wharntwQ7IYvWrcZY9O1_Dl0PYWhocg7z19GO1BoE9A4_hCoafmqt47447il0LgkfbXtB52yI283kc5--pS93968ze-z5dPdYn69zJzQZsh8nRI68LVTVeXJkNNFGknpDToCq6FOUQuhUKKrjMSZrVxd1RpBCaNUPmUXe98-dJ8jxaFcd2No08oyBzlLpTQmFu5ZLnQxBvJlH5qtDV8lQrn7WPnnY0kj9pqYuOmi8Ov8v-gbO0Zsfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049304561</pqid></control><display><type>article</type><title>Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mahfoudhi, Kamel</creator><creatorcontrib>Mahfoudhi, Kamel</creatorcontrib><description>The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the
-spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples.</description><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1134/S0016266323050027</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Analysis ; Functional Analysis ; Hilbert space ; Linear operators ; Mathematics ; Mathematics and Statistics</subject><ispartof>Functional analysis and its applications, 2023-12, Vol.57 (Suppl 1), p.17-25</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-fd230c0fdc5bbfe8ec67d2344f81ce0a60d016725141cb8419abcdbd610528553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016266323050027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016266323050027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mahfoudhi, Kamel</creatorcontrib><title>Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range</title><title>Functional analysis and its applications</title><addtitle>Funct Anal Its Appl</addtitle><description>The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the
-spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Analysis</subject><subject>Functional Analysis</subject><subject>Hilbert space</subject><subject>Linear operators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UEtPwzAMjhBIjMEP4BaJc8FOkzQ7oonHxMRrcK7S1EGdtrYk7YF_T6YhcUAcLEv-Hv5sxs4RLhFzebUCQC20zkUOCkAUB2yCqsgzI406ZJMdnO3wY3YS4xoATIF6wharntwQ7IYvWrcZY9O1_Dl0PYWhocg7z19GO1BoE9A4_hCoafmqt47447il0LgkfbXtB52yI283kc5--pS93968ze-z5dPdYn69zJzQZsh8nRI68LVTVeXJkNNFGknpDToCq6FOUQuhUKKrjMSZrVxd1RpBCaNUPmUXe98-dJ8jxaFcd2No08oyBzlLpTQmFu5ZLnQxBvJlH5qtDV8lQrn7WPnnY0kj9pqYuOmi8Ov8v-gbO0Zsfg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Mahfoudhi, Kamel</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range</title><author>Mahfoudhi, Kamel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-fd230c0fdc5bbfe8ec67d2344f81ce0a60d016725141cb8419abcdbd610528553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Analysis</topic><topic>Functional Analysis</topic><topic>Hilbert space</topic><topic>Linear operators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahfoudhi, Kamel</creatorcontrib><collection>CrossRef</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahfoudhi, Kamel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range</atitle><jtitle>Functional analysis and its applications</jtitle><stitle>Funct Anal Its Appl</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>57</volume><issue>Suppl 1</issue><spage>17</spage><epage>25</epage><pages>17-25</pages><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the
-spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016266323050027</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2663 |
ispartof | Functional analysis and its applications, 2023-12, Vol.57 (Suppl 1), p.17-25 |
issn | 0016-2663 1573-8485 |
language | eng |
recordid | cdi_proquest_journals_3049304561 |
source | SpringerLink Journals - AutoHoldings |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Analysis Functional Analysis Hilbert space Linear operators Mathematics Mathematics and Statistics |
title | Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Inclusion%20Properties%20of%20Quaternionic%20Krein%20Space%20Numerical%20Range&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Mahfoudhi,%20Kamel&rft.date=2023-12-01&rft.volume=57&rft.issue=Suppl%201&rft.spage=17&rft.epage=25&rft.pages=17-25&rft.issn=0016-2663&rft.eissn=1573-8485&rft_id=info:doi/10.1134/S0016266323050027&rft_dat=%3Cproquest_cross%3E3049304561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049304561&rft_id=info:pmid/&rfr_iscdi=true |