Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range

The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional analysis and its applications 2023-12, Vol.57 (Suppl 1), p.17-25
1. Verfasser: Mahfoudhi, Kamel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue Suppl 1
container_start_page 17
container_title Functional analysis and its applications
container_volume 57
creator Mahfoudhi, Kamel
description The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the -spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples.
doi_str_mv 10.1134/S0016266323050027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049304561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049304561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-fd230c0fdc5bbfe8ec67d2344f81ce0a60d016725141cb8419abcdbd610528553</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBIjMEP4BaJc8FOkzQ7oonHxMRrcK7S1EGdtrYk7YF_T6YhcUAcLEv-Hv5sxs4RLhFzebUCQC20zkUOCkAUB2yCqsgzI406ZJMdnO3wY3YS4xoATIF6wharntwQ7IYvWrcZY9O1_Dl0PYWhocg7z19GO1BoE9A4_hCoafmqt47447il0LgkfbXtB52yI283kc5--pS93968ze-z5dPdYn69zJzQZsh8nRI68LVTVeXJkNNFGknpDToCq6FOUQuhUKKrjMSZrVxd1RpBCaNUPmUXe98-dJ8jxaFcd2No08oyBzlLpTQmFu5ZLnQxBvJlH5qtDV8lQrn7WPnnY0kj9pqYuOmi8Ov8v-gbO0Zsfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049304561</pqid></control><display><type>article</type><title>Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mahfoudhi, Kamel</creator><creatorcontrib>Mahfoudhi, Kamel</creatorcontrib><description>The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the -spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples.</description><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1134/S0016266323050027</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Analysis ; Functional Analysis ; Hilbert space ; Linear operators ; Mathematics ; Mathematics and Statistics</subject><ispartof>Functional analysis and its applications, 2023-12, Vol.57 (Suppl 1), p.17-25</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-fd230c0fdc5bbfe8ec67d2344f81ce0a60d016725141cb8419abcdbd610528553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016266323050027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016266323050027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mahfoudhi, Kamel</creatorcontrib><title>Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range</title><title>Functional analysis and its applications</title><addtitle>Funct Anal Its Appl</addtitle><description>The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the -spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Analysis</subject><subject>Functional Analysis</subject><subject>Hilbert space</subject><subject>Linear operators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UEtPwzAMjhBIjMEP4BaJc8FOkzQ7oonHxMRrcK7S1EGdtrYk7YF_T6YhcUAcLEv-Hv5sxs4RLhFzebUCQC20zkUOCkAUB2yCqsgzI406ZJMdnO3wY3YS4xoATIF6wharntwQ7IYvWrcZY9O1_Dl0PYWhocg7z19GO1BoE9A4_hCoafmqt47447il0LgkfbXtB52yI283kc5--pS93968ze-z5dPdYn69zJzQZsh8nRI68LVTVeXJkNNFGknpDToCq6FOUQuhUKKrjMSZrVxd1RpBCaNUPmUXe98-dJ8jxaFcd2No08oyBzlLpTQmFu5ZLnQxBvJlH5qtDV8lQrn7WPnnY0kj9pqYuOmi8Ov8v-gbO0Zsfg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Mahfoudhi, Kamel</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range</title><author>Mahfoudhi, Kamel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-fd230c0fdc5bbfe8ec67d2344f81ce0a60d016725141cb8419abcdbd610528553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Analysis</topic><topic>Functional Analysis</topic><topic>Hilbert space</topic><topic>Linear operators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahfoudhi, Kamel</creatorcontrib><collection>CrossRef</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahfoudhi, Kamel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range</atitle><jtitle>Functional analysis and its applications</jtitle><stitle>Funct Anal Its Appl</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>57</volume><issue>Suppl 1</issue><spage>17</spage><epage>25</epage><pages>17-25</pages><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the -spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016266323050027</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2663
ispartof Functional analysis and its applications, 2023-12, Vol.57 (Suppl 1), p.17-25
issn 0016-2663
1573-8485
language eng
recordid cdi_proquest_journals_3049304561
source SpringerLink Journals - AutoHoldings
subjects 14/34
639/766/189
639/766/530
639/766/747
Analysis
Functional Analysis
Hilbert space
Linear operators
Mathematics
Mathematics and Statistics
title Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Inclusion%20Properties%20of%20Quaternionic%20Krein%20Space%20Numerical%20Range&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Mahfoudhi,%20Kamel&rft.date=2023-12-01&rft.volume=57&rft.issue=Suppl%201&rft.spage=17&rft.epage=25&rft.pages=17-25&rft.issn=0016-2663&rft.eissn=1573-8485&rft_id=info:doi/10.1134/S0016266323050027&rft_dat=%3Cproquest_cross%3E3049304561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049304561&rft_id=info:pmid/&rfr_iscdi=true