Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range
The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship be...
Gespeichert in:
Veröffentlicht in: | Functional analysis and its applications 2023-12, Vol.57 (Suppl 1), p.17-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the
-spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples. |
---|---|
ISSN: | 0016-2663 1573-8485 |
DOI: | 10.1134/S0016266323050027 |