On the exponential diophantine equation Unx+Un+1x=Um
Let { U n } n ≥ 0 be the Lucas sequence. For integers x , n and m , we find all solutions to U n x + U n + 1 x = U m . The equation was studied and claimed to be solved completely in Ddamulira and Luca (Ramanujan J 56(2):651–684, 2021) but there are some computational bugs in that publication becaus...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2024, Vol.64 (1), p.153-184 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
{
U
n
}
n
≥
0
be the Lucas sequence. For integers
x
,
n
and
m
, we find all solutions to
U
n
x
+
U
n
+
1
x
=
U
m
. The equation was studied and claimed to be solved completely in Ddamulira and Luca (Ramanujan J 56(2):651–684, 2021) but there are some computational bugs in that publication because of the wrong statement of Mignotte’s bound from Mignotte (A kit on linear forms in three logarithms.
http://irma.math.unistra.fr/~bugeaud/travaux/kit.pdf
, 2008). In this paper, the main result remains the same as in Ddamulira and Luca (Ramanujan J 56(2):651–684, 2021) but we focus on correcting the computational mistakes in Ddamulira and Luca (Ramanujan J 56(2):651–684, 2021), involving the application of Theorem
2.1
from Mignotte (A kit on linear forms in three logarithms.
http://irma.math.unistra.fr/~bugeaud/travaux/kit.pdf
, 2008). |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-023-00818-x |