Water competition between cities and agriculture driven by climate change and urban growth
Urban water demand will increase by 80% by 2050, while climate change will alter the timing and distribution of water. Here we quantify the magnitude of these twin challenges to urban water security, combining a dataset of urban water sources of 482 of the world’s largest cities with estimates of fu...
Gespeichert in:
Veröffentlicht in: | Nature sustainability 2018-01, Vol.1 (1), p.51-58 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Urban water demand will increase by 80% by 2050, while climate change will alter the timing and distribution of water. Here we quantify the magnitude of these twin challenges to urban water security, combining a dataset of urban water sources of 482 of the world’s largest cities with estimates of future water demand, based on the Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment scenarios, and predictions of future water availability, using the WaterGAP3 modelling framework. We project an urban surface-water deficit of 1,386
–
6,764 million m³. More than 27% of cities studied, containing 233 million people, will have water demands that exceed surface-water availability. An additional 19% of cities, which are dependent on surface-water transfers, have a high potential for conflict between the urban and agricultural sectors, since both sectors cannot obtain their estimated future water demands. In 80% of these high-conflict watersheds, improvements in agricultural water-use efficiency could free up enough water for urban use. Investments in improving agricultural water use could thus serve as an important global change adaptation strategy
.
Rising population and changes in water supply under climate change affect cities globally. This study finds that in 27% of cities studied, water demand is likely to exceed availability by 2050, with many other cities competing with agriculture on water needs. |
---|---|
ISSN: | 2398-9629 2398-9629 |
DOI: | 10.1038/s41893-017-0006-8 |