Numerical and experimental characterisation of polylactic acid (PLA) processed by additive manufacturing (AM): bending and tensile tests

In additive manufacturing (AM), one of the most popular procedures is material extrusion (MEX). The materials and manufacturing parameters used in this process have a significant impact on a printed product’s quality. The purpose of this work is to investigate the effects of infill percentage and fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composites science 2024-02, Vol.8 (2), p.1-20
Hauptverfasser: Salgueiro, Mariana P., Pereira, Fábio A. M., Faria, C.L., Pereira, E. N. B., Almeida, João Alberto Pinheiro Pereira, Campos, Teresa D., Fakher, Chaari, Zille, Andrea, QUYEN, NGUYEN-TRONG, Dourado, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In additive manufacturing (AM), one of the most popular procedures is material extrusion (MEX). The materials and manufacturing parameters used in this process have a significant impact on a printed product’s quality. The purpose of this work is to investigate the effects of infill percentage and filament orientation on the mechanical properties of printed structures. For this reason, the characterisation of polylactic acid (PLA) was done numerically using the finite element method and experimentally through mechanical tests. The experiments involved three-point bending and tensile tests. The results showed that mechanical performance is highly dependent on these processing parameters mainly when the infill percentage is less than 100%. The highest elastic modulus was exhibited for structures with filament align at 0◦ and 100% infill, while the lowest one was verified for specimen filament aligned at 0◦ and 30% infill. The results demonstrated that the process parameters have a significant impact on mechanical performance, particularly when the infill percentage is less than 100%. Structures with filament aligned at 0◦ and 100% infill showed the maximum elastic modulus, whereas specimens with filament oriented at 0◦ and 30% infill showed the lowest. The obtained numerical agreement indicated that an inverse method based only on the load–displacement curve can yield an accurate value for this material’s elastic modulus. National Innovation Agency (ANI) for MSc grant of Mariana Salgueiro nº POCI-01-0247- FEDER-039733 and Portuguese Foundations for Science and Technology. This project was co-financed by European Regional Development Fund (ERDF) through SI&IDT Projects in the framework of co-hosting—Competitiveness and Internationalisation Operational Programme (CIOP)—COMPETE 2020, Portugal 2020, with the National Innovation Agency (ANI) as the Intermediate Partner. Fabio Pereira acknowledges the Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020. Mariana Salgueiro and Andrea Zille acknowledge the European Commission and the National Innovation Agency (ANI) for the financial support through the project “ARCHKNIT: Innovative smart textile interfaces for architectural applications”, Ref.: POCI-01-0247-FEDER-039733. This project was co-financed by European Regional Development Fund (ERDF) through SI&IDT Projects in the framework of co-hosting—Competitiveness and Internationalisation Operational Programme (CIOP)—COMPETE 2020, Portu
ISSN:2504-477X
2504-477X
DOI:10.3390/jcs8020055