Learning evolving relations for multivariate time series forecasting

Multivariate time series forecasting is essential in various fields, including healthcare and traffic management, but it is a challenging task due to the strong dynamics in both intra-channel relations (temporal patterns within individual variables) and inter-channel relations (the relationships bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2024-03, Vol.54 (5), p.3918-3932
Hauptverfasser: Nguyen-Thai, Binh, Le, Vuong, Tieu, Ngoc-Dung T., Tran, Truyen, Venkatesh, Svetha, Ramzan, Naeem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multivariate time series forecasting is essential in various fields, including healthcare and traffic management, but it is a challenging task due to the strong dynamics in both intra-channel relations (temporal patterns within individual variables) and inter-channel relations (the relationships between variables), which can evolve over time with abrupt changes. This paper proposes ERAN (Evolving Relational Attention Network), a framework for multivariate time series forecasting, that is capable to capture such dynamics of these relations. On the one hand, ERAN represents inter-channel relations with a graph which evolves over time, modeled using a recurrent neural network. On the other hand, ERAN represents the intra-channel relations using a temporal attentional convolution, which captures the local temporal dependencies adaptively with the input data. The elvoving graph structure and the temporal attentional convolution are intergrated in a unified model to capture both types of relations. The model is experimented on a large number of real-life datasets including traffic flows, energy consumption, and COVID-19 transmission data. The experimental results show a significant improvement over the state-of-the-art methods in multivariate time series forecasting particularly for non-stationary data.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-023-05220-0