A note on the convexity number of complementary prisms

In the geodetic convexity, a set of vertices S of a graph G is convex if all vertices belonging to any shortest path between two vertices of S lie in S. The cardinality con(G) of a maximum proper convex set S of G is the convexity number of G. The complementary prism GG of a graph G arises from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2019-08, Vol.21 (4), p.1-10
Hauptverfasser: Castonguay, Diane, Coelho, Erika M M, Coelho, Hebert, Nascimento, Julliano R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the geodetic convexity, a set of vertices S of a graph G is convex if all vertices belonging to any shortest path between two vertices of S lie in S. The cardinality con(G) of a maximum proper convex set S of G is the convexity number of G. The complementary prism GG of a graph G arises from the disjoint union of the graphs G and G by adding the edges of a perfect matching between the corresponding vertices of G and G. In this work, we prove that the decision problem related to the convexity number is NP-complete even restricted to complementary prisms, we determine con(GG) when G is disconnected or G is a cograph, and we present a lower bound when diam(G) ≠ 3.
ISSN:1365-8050