On the VC-dimension of half-spaces with respect to convex sets
A family S of convex sets in the plane defines a hypergraph H = (S, ε) with S as a vertex set and ε as the set of hyperedges as follows. Every subfamily S' ⊂ S defines a hyperedge in ε if and only if there exists a half space h that fully contains S', and no other set of S is fully contain...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics and theoretical computer science 2021-09, Vol.23 (3), p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A family S of convex sets in the plane defines a hypergraph H = (S, ε) with S as a vertex set and ε as the set of hyperedges as follows. Every subfamily S' ⊂ S defines a hyperedge in ε if and only if there exists a half space h that fully contains S', and no other set of S is fully contained in h. In this case, we say that h realizes S'. We say a set S is shattered, if all its subsets are realized. The VC-dimension of a hypergraph H is the size of the largest shattered set. We show that the VC-dimension for pairwise disjoint convex sets in the plane is bounded by 3, and this is tight. In contrast, we show the VC-dimension of convex sets in the plane (not necessarily disjoint) is unbounded. We provide a quadratic lower bound in the number of pairs of intersecting sets in a shattered family of convex sets in the plane. We also show that the VC-dimension is unbounded for pairwise disjoint convex sets in Rd, for d ≥ 3. We focus on, possibly intersecting, segments in the plane and determine that the VC-dimension is at most 5. And this is tight, as we construct a set of five segments that can be shattered. We give two exemplary applications. One for a geometric set cover problem and one for a range-query data structure problem, to motivate our findings. |
---|---|
ISSN: | 1365-8050 |