Indoor Air Remediation Using Biochar from Bark: Impact of Particle Size and Pollutant Concentration
The growing emphasis on indoor air quality and public health is fuelling the need for efficient yet affordable air purification techniques. In this study, the influence of biochar particle size on its adsorption efficiency toward airborne pollutants was examined. Bark-derived biochar particles were...
Gespeichert in:
Veröffentlicht in: | Indoor air 2024, Vol.2024 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The growing emphasis on indoor air quality and public health is fuelling the need for efficient yet affordable air purification techniques. In this study, the influence of biochar particle size on its adsorption efficiency toward airborne pollutants was examined. Bark-derived biochar particles were treated by grinding or ball milling, and then, seven samples with different particle size groups were separated. Biochar particles were characterized by particle size, proximate, SEM, XRD, and physisorption analyses. For adsorption efficiency, two different pollutants were tested at variable initial concentrations. The physical composition and XRD patterns of the biochar with different particle sizes were comparable. The ball-milled sample was an exception in that it had higher ash content and additional XRD peaks signifying contamination of the sample. The porosity of biochar was greater in smaller particles. Ball milling increased the specific surface area and total pore volume by 102% and 48%, respectively. Biochar with finer particle size exhibited the highest adsorption potential towards formaldehyde and methanol among other samples. It should be emphasized that simple mechanical grinding is preferred for reducing biochar size to avoid the risk of eventual contamination, greater energy consumption, and slower processing related to ball milling. When a low concentration of pollutant was tested (1 ppm formaldehyde), the effect of particle size on the adsorption efficiency was more noticeable. However, the effect of particle size was less dominant when higher concentrations of pollutants were tested. Smaller biochar particles ( |
---|---|
ISSN: | 0905-6947 1600-0668 |
DOI: | 10.1155/2024/1537588 |