Remarkable enhancement of power conversion efficiency of silicon photovoltaic cell overlaying with novel metallic-polymer nanocomposites utilising immersion technique

Functional nanoarrays of metallic-polymer nanocomposites have combined the advantageous elements of light trapping efficiency via enhanced light scattering mechanisms and accentuated localized surface plasmon resonance (LPSR) effect. The coating of such nanocomposites on the glass surface of a photo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical papers 2024-04, Vol.78 (6), p.3651-3665
Hauptverfasser: Tay, Bing-Yuan, Chee, Swee-Yong, Lee, Chee-Leong, Aminuzzaman, Mohammod
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functional nanoarrays of metallic-polymer nanocomposites have combined the advantageous elements of light trapping efficiency via enhanced light scattering mechanisms and accentuated localized surface plasmon resonance (LPSR) effect. The coating of such nanocomposites on the glass surface of a photovoltaic cell has enhanced its light harvesting efficiency attributed to the anti-reflective property of the polymer nanoarrays in addition to the plasmonic effect of the metallic nanoparticles. In this study, silver nanoparticles (AgNPs) with different size ranges were fabricated through a chemical reduction method with dodecylamine as the capping agent. Besides that, poly(methyl methacrylate- co -acrylic acid) nanospheres incorporated with various amount of trimethoxyvinylsilane [P(MMA- co -AA- co -TMVS)] were synthesized via emulsion polymerization. Subsequently, polyacrylic nanospheres containing 7 wt% of TMVS and encapsulated with different amount of AgNPs of two different size ranges, i.e., 3–7 nm and 10–30 nm, were also synthesized. Two chemical bath deposition methods based on the self-assembly coating technique, namely immersion coating and dip coating technique, were employed to deposit the polymeric nanospheres as nanoarrays on glass substrates. The immersion method was found to give a remarkable power conversion efficiency (PCE) improvement of 42%, when the glass surface of a solar module was coated with P(MMA- co -AA- co -TMVS) nanospheres containing 7 wt% of TMVS. The highest relative PCE enhancement of 73.6% was achieved when an array of P(MMA- co -AA- co -TMVS) nanospheres containing 7 wt% of TMVS and encapsulated with 12.5 ppm of AgNPs (10–30 nm) was coated on the glass surface of photovoltaic cells.
ISSN:0366-6352
1336-9075
2585-7290
DOI:10.1007/s11696-024-03337-1