Analysis of a class of globally divergence-free HDG methods for stationary Navier-Stokes equations
In this paper, we analyze a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the P k / P k − 1 ( k ⩾ 1 ) discontinuous finite element combination for the velocity...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2024-05, Vol.67 (5), p.1133-1158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1158 |
---|---|
container_issue | 5 |
container_start_page | 1133 |
container_title | Science China. Mathematics |
container_volume | 67 |
creator | Chen, Gang Xie, Xiaoping |
description | In this paper, we analyze a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the
P
k
/
P
k
−
1
(
k
⩾
1
)
discontinuous finite element combination for the velocity and pressure approximations in the interior of elements, piecewise
P
m
(
m
=
k
,
k
−
1
)
for the velocity gradient approximation in the interior of elements, and piecewise
P
k
/
P
k
for the trace approximations of the velocity and pressure on the inter-element boundaries. We show that the uniqueness condition for the discrete solution is guaranteed by that for the continuous solution together with a sufficiently small mesh size. Based on the derived discrete HDG Sobolev embedding properties, optimal error estimates are obtained. Numerical experiments are performed to verify the theoretical analysis. |
doi_str_mv | 10.1007/s11425-022-2077-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3047318658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047318658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-32f97628df35bf6b3ca77949b84753430d80447bc9e97877e422238570a79be73</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEtPYA3CLxDmQJmmdHKcBG9IEB-AcpW0yOrplS7pJe3vSFYkTPtiW_PuX_SF0m9H7jFJ4iFkmWE4oY4RRAAIXaJTJQpGU2GXqCxAEmOTXaBLjmqbgigrgI1ROt6Y9xSZi77DBVWviuV21vjRte8J1c7RhZbeVJS5YixePc7yx3ZevI3Y-4NiZrvFbE0741RwbG8h7579txHZ_OE_iDbpypo128lvH6PP56WO2IMu3-ctsuiQVK2RHOHMKCiZrx_PSFSWvDIASqpQCci44rSUVAspKWQUSwArGGJc5UAOqtMDH6G7w3QW_P9jY6bU_hPRe1Lx_NsHIZVJlg6oKPsZgnd6FZpPO1xnVPU090NSJpu5p6t6ZDTsxabcrG_6c_1_6AXzydlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3047318658</pqid></control><display><type>article</type><title>Analysis of a class of globally divergence-free HDG methods for stationary Navier-Stokes equations</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Gang ; Xie, Xiaoping</creator><creatorcontrib>Chen, Gang ; Xie, Xiaoping</creatorcontrib><description>In this paper, we analyze a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the
P
k
/
P
k
−
1
(
k
⩾
1
)
discontinuous finite element combination for the velocity and pressure approximations in the interior of elements, piecewise
P
m
(
m
=
k
,
k
−
1
)
for the velocity gradient approximation in the interior of elements, and piecewise
P
k
/
P
k
for the trace approximations of the velocity and pressure on the inter-element boundaries. We show that the uniqueness condition for the discrete solution is guaranteed by that for the continuous solution together with a sufficiently small mesh size. Based on the derived discrete HDG Sobolev embedding properties, optimal error estimates are obtained. Numerical experiments are performed to verify the theoretical analysis.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-022-2077-7</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Approximation ; Divergence ; Finite element method ; Fluid flow ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Navier-Stokes equations ; Robustness (mathematics) ; Velocity gradient</subject><ispartof>Science China. Mathematics, 2024-05, Vol.67 (5), p.1133-1158</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-32f97628df35bf6b3ca77949b84753430d80447bc9e97877e422238570a79be73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-022-2077-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-022-2077-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Xie, Xiaoping</creatorcontrib><title>Analysis of a class of globally divergence-free HDG methods for stationary Navier-Stokes equations</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>In this paper, we analyze a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the
P
k
/
P
k
−
1
(
k
⩾
1
)
discontinuous finite element combination for the velocity and pressure approximations in the interior of elements, piecewise
P
m
(
m
=
k
,
k
−
1
)
for the velocity gradient approximation in the interior of elements, and piecewise
P
k
/
P
k
for the trace approximations of the velocity and pressure on the inter-element boundaries. We show that the uniqueness condition for the discrete solution is guaranteed by that for the continuous solution together with a sufficiently small mesh size. Based on the derived discrete HDG Sobolev embedding properties, optimal error estimates are obtained. Numerical experiments are performed to verify the theoretical analysis.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Divergence</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Navier-Stokes equations</subject><subject>Robustness (mathematics)</subject><subject>Velocity gradient</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMhiMEEtPYA3CLxDmQJmmdHKcBG9IEB-AcpW0yOrplS7pJe3vSFYkTPtiW_PuX_SF0m9H7jFJ4iFkmWE4oY4RRAAIXaJTJQpGU2GXqCxAEmOTXaBLjmqbgigrgI1ROt6Y9xSZi77DBVWviuV21vjRte8J1c7RhZbeVJS5YixePc7yx3ZevI3Y-4NiZrvFbE0741RwbG8h7579txHZ_OE_iDbpypo128lvH6PP56WO2IMu3-ctsuiQVK2RHOHMKCiZrx_PSFSWvDIASqpQCci44rSUVAspKWQUSwArGGJc5UAOqtMDH6G7w3QW_P9jY6bU_hPRe1Lx_NsHIZVJlg6oKPsZgnd6FZpPO1xnVPU090NSJpu5p6t6ZDTsxabcrG_6c_1_6AXzydlU</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Chen, Gang</creator><creator>Xie, Xiaoping</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Analysis of a class of globally divergence-free HDG methods for stationary Navier-Stokes equations</title><author>Chen, Gang ; Xie, Xiaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-32f97628df35bf6b3ca77949b84753430d80447bc9e97877e422238570a79be73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Divergence</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Navier-Stokes equations</topic><topic>Robustness (mathematics)</topic><topic>Velocity gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Xie, Xiaoping</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gang</au><au>Xie, Xiaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a class of globally divergence-free HDG methods for stationary Navier-Stokes equations</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>67</volume><issue>5</issue><spage>1133</spage><epage>1158</epage><pages>1133-1158</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>In this paper, we analyze a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the
P
k
/
P
k
−
1
(
k
⩾
1
)
discontinuous finite element combination for the velocity and pressure approximations in the interior of elements, piecewise
P
m
(
m
=
k
,
k
−
1
)
for the velocity gradient approximation in the interior of elements, and piecewise
P
k
/
P
k
for the trace approximations of the velocity and pressure on the inter-element boundaries. We show that the uniqueness condition for the discrete solution is guaranteed by that for the continuous solution together with a sufficiently small mesh size. Based on the derived discrete HDG Sobolev embedding properties, optimal error estimates are obtained. Numerical experiments are performed to verify the theoretical analysis.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-022-2077-7</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2024-05, Vol.67 (5), p.1133-1158 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_3047318658 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Approximation Divergence Finite element method Fluid flow Mathematical analysis Mathematics Mathematics and Statistics Navier-Stokes equations Robustness (mathematics) Velocity gradient |
title | Analysis of a class of globally divergence-free HDG methods for stationary Navier-Stokes equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20class%20of%20globally%20divergence-free%20HDG%20methods%20for%20stationary%20Navier-Stokes%20equations&rft.jtitle=Science%20China.%20Mathematics&rft.au=Chen,%20Gang&rft.date=2024-05-01&rft.volume=67&rft.issue=5&rft.spage=1133&rft.epage=1158&rft.pages=1133-1158&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-022-2077-7&rft_dat=%3Cproquest_cross%3E3047318658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3047318658&rft_id=info:pmid/&rfr_iscdi=true |