Analysis of a class of globally divergence-free HDG methods for stationary Navier-Stokes equations
In this paper, we analyze a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the P k / P k − 1 ( k ⩾ 1 ) discontinuous finite element combination for the velocity...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2024-05, Vol.67 (5), p.1133-1158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we analyze a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the
P
k
/
P
k
−
1
(
k
⩾
1
)
discontinuous finite element combination for the velocity and pressure approximations in the interior of elements, piecewise
P
m
(
m
=
k
,
k
−
1
)
for the velocity gradient approximation in the interior of elements, and piecewise
P
k
/
P
k
for the trace approximations of the velocity and pressure on the inter-element boundaries. We show that the uniqueness condition for the discrete solution is guaranteed by that for the continuous solution together with a sufficiently small mesh size. Based on the derived discrete HDG Sobolev embedding properties, optimal error estimates are obtained. Numerical experiments are performed to verify the theoretical analysis. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-022-2077-7 |