Analysis of a class of globally divergence-free HDG methods for stationary Navier-Stokes equations

In this paper, we analyze a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the P k / P k − 1 ( k ⩾ 1 ) discontinuous finite element combination for the velocity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2024-05, Vol.67 (5), p.1133-1158
Hauptverfasser: Chen, Gang, Xie, Xiaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we analyze a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the P k / P k − 1 ( k ⩾ 1 ) discontinuous finite element combination for the velocity and pressure approximations in the interior of elements, piecewise P m ( m = k , k − 1 ) for the velocity gradient approximation in the interior of elements, and piecewise P k / P k for the trace approximations of the velocity and pressure on the inter-element boundaries. We show that the uniqueness condition for the discrete solution is guaranteed by that for the continuous solution together with a sufficiently small mesh size. Based on the derived discrete HDG Sobolev embedding properties, optimal error estimates are obtained. Numerical experiments are performed to verify the theoretical analysis.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-022-2077-7