AIS 2024 Challenge on Video Quality Assessment of User-Generated Content: Methods and Results

This paper reviews the AIS 2024 Video Quality Assessment (VQA) Challenge, focused on User-Generated Content (UGC). The aim of this challenge is to gather deep learning-based methods capable of estimating the perceptual quality of UGC videos. The user-generated videos from the YouTube UGC Dataset inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Conde, Marcos V, Zadtootaghaj, Saman, Barman, Nabajeet, Timofte, Radu, He, Chenlong, Zheng, Qi, Zhu, Ruoxi, Tu, Zhengzhong, Wang, Haiqiang, Chen, Xiangguang, Meng, Wenhui, Pan, Xiang, Shi, Huiying, Zhu, Han, Xu, Xiaozhong, Sun, Lei, Chen, Zhenzhong, Liu, Shan, Zhang, Zicheng, Wu, Haoning, Zhou, Yingjie, Li, Chunyi, Liu, Xiaohong, Lin, Weisi, Zhai, Guangtao, Sun, Wei, Cao, Yuqin, Jiang, Yanwei, Jia, Jun, Zhang, Zhichao, Chen, Zijian, Zhang, Weixia, Xiongkuo Min, Göring, Steve, Qi, Zihao, Chen, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reviews the AIS 2024 Video Quality Assessment (VQA) Challenge, focused on User-Generated Content (UGC). The aim of this challenge is to gather deep learning-based methods capable of estimating the perceptual quality of UGC videos. The user-generated videos from the YouTube UGC Dataset include diverse content (sports, games, lyrics, anime, etc.), quality and resolutions. The proposed methods must process 30 FHD frames under 1 second. In the challenge, a total of 102 participants registered, and 15 submitted code and models. The performance of the top-5 submissions is reviewed and provided here as a survey of diverse deep models for efficient video quality assessment of user-generated content.
ISSN:2331-8422