Confluent functions, Laguerre polynomials and their (generalized) bilinear integrals
We review properties of confluent functions and the closely related Laguerre polynomials, and determine their bilinear integrals. As is well-known, these integrals are convergent only for a limited range of parameters. However, when one uses the generalized integral they can be computed essentially...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We review properties of confluent functions and the closely related Laguerre polynomials, and determine their bilinear integrals. As is well-known, these integrals are convergent only for a limited range of parameters. However, when one uses the generalized integral they can be computed essentially without restricting the parameters. This gives the (generalized) Gram matrix of Laguerre polynomials. If the parameters are not negative integers, then Laguerre polynomials are orthogonal, or at least pseudo-orthogonal in the case of generalized integrals. For negative integer parameters, the orthogonality relations are more complicated. |
---|---|
ISSN: | 2331-8422 |