A note on the convergence of deterministic gradient sampling in nonsmooth optimization

Approximation of subdifferentials is one of the main tasks when computing descent directions for nonsmooth optimization problems. In this article, we propose a bisection method for weakly lower semismooth functions which is able to compute new subgradients that improve a given approximation in case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2024-05, Vol.88 (1), p.151-165
1. Verfasser: Gebken, Bennet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Approximation of subdifferentials is one of the main tasks when computing descent directions for nonsmooth optimization problems. In this article, we propose a bisection method for weakly lower semismooth functions which is able to compute new subgradients that improve a given approximation in case a direction with insufficient descent was computed. Combined with a recently proposed deterministic gradient sampling approach, this yields a deterministic and provably convergent way to approximate subdifferentials for computing descent directions.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-024-00552-0