Assessing Machine Learning Techniques for Predicting Banking Crises in India

The historical prevalence of banking crises and their profound impact on global economies underscores the imperative for policy makers to refine their crisis forecasting frameworks. Against this backdrop, the present study endeavors to predict potential banking crises in India by leveraging a spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of risk and financial management 2024-04, Vol.17 (4), p.141
Hauptverfasser: Puli, Sreenivasulu, Thota, Nagaraju, Subrahmanyam, A. C. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The historical prevalence of banking crises and their profound impact on global economies underscores the imperative for policy makers to refine their crisis forecasting frameworks. Against this backdrop, the present study endeavors to predict potential banking crises in India by leveraging a spectrum of artificial intelligence and machine learning techniques (AI-ML). These techniques encompass logistic regression, random forest, naïve Bayes, gradient boosting, support vector machine, neural networks, K-nearest neighbors, and decision trees. Initially, a banking fragility index was constructed utilizing monthly banking data spanning 2002 to 2023, demarcating the periods of crisis and stability. Subsequently, an extensive array of early warning indicators (EWIs) encompassing asset prices, macroeconomic factors, external influences, and credit-related variables were employed to forecast crisis periods. Our findings reveal that AI-ML models exhibit reasonable accuracy in predicting banking crises. Moreover, advanced model performance metrics highlight neural networks and random forest models as particularly effective in crisis prediction, surpassing other methodologies. Notably, among the EWIs, variables related to credit, interest rates, and liquidity emerge as possessing relatively higher information value in discerning fragilities within the Indian banking system. Importantly, the methodological framework presented herein can be extrapolated for banking crisis prediction in other economies.
ISSN:1911-8074
1911-8066
1911-8074
DOI:10.3390/jrfm17040141