Natural Gradient Primal-Dual Method for Decentralized Learning

We propose the Natural Gradient Primal-Dual (NGPD) method for decentralized learning of parameters in Deep Neural Networks (DNNs). Conventional approaches, such as the primal-dual method, constrain the local parameters to be similar between connected nodes. However, since most of them follow a first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal and information processing over networks 2024, Vol.10, p.417-433
Hauptverfasser: Niwa, Kenta, Ishii, Hiro, Sawada, Hiroshi, Fujino, Akinori, Harada, Noboru, Yokota, Rio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose the Natural Gradient Primal-Dual (NGPD) method for decentralized learning of parameters in Deep Neural Networks (DNNs). Conventional approaches, such as the primal-dual method, constrain the local parameters to be similar between connected nodes. However, since most of them follow a first-order optimization method and the loss functions of DNNs may have ill-conditioned curvatures, many local parameter updates and communication among local nodes are needed. For fast convergence, we integrate the second-order natural gradient method into the primal-dual method (NGPD). Since additional constraint minimizes the amount of output change before and after the parameter updates, robustness towards ill-conditioned curvatures is expected. We theoretically demonstrate the convergence rate for the averaged parameter (the average of the local parameters) under certain assumptions. As a practical implementation of NGPD without a significant increase in computational overheads, we introduce Kronecker Factored Approximate Curvature (K-FAC). Our experimental results confirmed that NGPD achieved the highest test accuracy through image classification tasks using DNNs.
ISSN:2373-776X
2373-776X
2373-7778
DOI:10.1109/TSIPN.2024.3388948