A Sharp Moser–Trudinger Type Inequality Involving Adimurthi–Druet Term in Two Dimensional Hyperbolic Space
Let B g ( 1 ) ⊂ H 2 be the unit geodesic ball and W 0 1 , 2 be the standard Sobolev space. Let λ 1 ( B g ( 1 ) ) be the first Dirichlet eigenvalue in B g ( 1 ) associated to the Laplace–Beltrami operator - Δ g on H 2 . In this paper, we establish a sharp Moser–Trudinger inequality involving the Adim...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2024-07, Vol.34 (7), Article 196 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
B
g
(
1
)
⊂
H
2
be the unit geodesic ball and
W
0
1
,
2
be the standard Sobolev space. Let
λ
1
(
B
g
(
1
)
)
be the first Dirichlet eigenvalue in
B
g
(
1
)
associated to the Laplace–Beltrami operator
-
Δ
g
on
H
2
. In this paper, we establish a sharp Moser–Trudinger inequality involving the Adimurthi–Duret term by a delicate blow-up analysis. Specifically, we prove that
sup
u
∈
W
0
1
,
2
(
B
g
(
1
)
)
,
‖
∇
g
u
‖
2
=
1
∫
B
g
(
1
)
e
4
π
(
1
+
α
‖
u
‖
2
2
)
u
2
d
Vol
g
<
∞
if and only if
α
<
λ
1
(
B
g
(
1
)
)
. We also prove the existence of extremal functions for the above inequality when
α
is sufficiently small, which, to our knowledge, is the first result on the extremal function of Moser–Trudinger inequality involving Adimurthi–Druet term in Hyperbolic space. Besides, we extend the above results to the entire space
H
2
partially, namely, we prove that
sup
u
∈
W
1
,
2
(
H
2
)
,
‖
∇
g
u
‖
2
=
1
∫
H
2
e
4
π
(
1
+
α
‖
u
‖
2
2
)
u
2
-
1
d
Vol
g
is finite if
α
<
1
/
4
, and is infinite if
α
>
1
/
4
. If
α
=
1
/
4
, we derive a different Adimurthi–Druet type result using an effective scaling argument, which is established by Chen et al. in [
9
] and [
10
]. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-024-01651-4 |