Muckenhoupt-Type Weights in Bessel Setting
Fix λ > - 1 / 2 and λ ≠ 0 . Consider the Bessel operator (introduced by Muckenhoupt–Stein) ▵ λ : = - d 2 d x 2 - 2 λ x d dx on R + : = ( 0 , ∞ ) with d m λ ( x ) : = x 2 λ d x and dx the Lebesgue measure on R + . In this paper, we study the Muckenhoupt-type weights in this Bessel setting along th...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2024-07, Vol.34 (7), Article 192 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fix
λ
>
-
1
/
2
and
λ
≠
0
. Consider the Bessel operator (introduced by Muckenhoupt–Stein)
▵
λ
:
=
-
d
2
d
x
2
-
2
λ
x
d
dx
on
R
+
:
=
(
0
,
∞
)
with
d
m
λ
(
x
)
:
=
x
2
λ
d
x
and
dx
the Lebesgue measure on
R
+
. In this paper, we study the Muckenhoupt-type weights in this Bessel setting along the line of Muckenhoupt–Stein and Andersen–Kerman. Besides, exploiting more properties of the weights
A
p
,
λ
introduced by Andersen–Kerman, we introduce a new class
A
~
p
,
λ
such that the Hardy–Littlewood maximal function is bounded on the weighted
L
w
p
space if and only if
w
is in
A
~
p
,
λ
. Moreover, along the line of Coifman–Rochberg–Weiss, we investigate the commutator
[
b
,
R
λ
]
with
R
λ
:
=
d
dx
(
▵
λ
)
-
1
2
to be the Bessel Riesz transform. We show that for
w
∈
A
p
,
λ
, the commutator
[
b
,
R
λ
]
is bounded on weighted
L
w
p
if and only if
b
is in the BMO space associated with
▵
λ
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-024-01645-2 |