Rank and Pairs of Rank and Dimension of Kernel of Z p Z p ²-Linear Codes
A code [Formula Omitted] is called [Formula Omitted]-linear if it is the Gray image of a [Formula Omitted]-additive code. For any prime number [Formula Omitted] larger than 3, the bounds of the rank of [Formula Omitted]-linear codes are given. For each value of the rank and the pairs of rank and the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2024-05, Vol.70 (5), p.3202-3212 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A code [Formula Omitted] is called [Formula Omitted]-linear if it is the Gray image of a [Formula Omitted]-additive code. For any prime number [Formula Omitted] larger than 3, the bounds of the rank of [Formula Omitted]-linear codes are given. For each value of the rank and the pairs of rank and the dimension of the kernel of [Formula Omitted]-linear codes, we give detailed construction of the corresponding codes. As an example, the rank and the dimension of the kernel of [Formula Omitted]-linear codes are studied. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2023.3317064 |