Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory

Computing-in-memory (CIM) based on analog resistive random access memory (RRAM) emerges as an energy-efficient technology for edge artificial intelligence (AI), where a large amount of ON-chip data buffer is needed to implement complex neural networks. In this work, we report a novel InGaZnOx (IGZO)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-05, Vol.71 (5), p.3336-3342
Hauptverfasser: Su, Yanbo, Shi, Mingcheng, Tang, Jianshi, Li, Yijun, Du, Yiwei, An, Ran, Li, Jiaming, Li, Yuankun, Yao, Jian, Hu, Ruofei, He, Yuan, Xi, Yue, Li, Qingwen, Qiu, Song, Zhang, Qingtian, Pan, Liyang, Gao, Bin, Qian, He, Wu, Huaqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3342
container_issue 5
container_start_page 3336
container_title IEEE transactions on electron devices
container_volume 71
creator Su, Yanbo
Shi, Mingcheng
Tang, Jianshi
Li, Yijun
Du, Yiwei
An, Ran
Li, Jiaming
Li, Yuankun
Yao, Jian
Hu, Ruofei
He, Yuan
Xi, Yue
Li, Qingwen
Qiu, Song
Zhang, Qingtian
Pan, Liyang
Gao, Bin
Qian, He
Wu, Huaqiang
description Computing-in-memory (CIM) based on analog resistive random access memory (RRAM) emerges as an energy-efficient technology for edge artificial intelligence (AI), where a large amount of ON-chip data buffer is needed to implement complex neural networks. In this work, we report a novel InGaZnOx (IGZO)/carbon nanotube (CNT) hybrid-polarity 2T0C DRAM as a backend-of-the-line (BEOL) compatible buffer, which is a monolithic 3-D (M3D) integrated with HfO2-based analog RRAM array and Si CMOS logic to demonstrate a M3D-BRIC chip. The structural integrity and proper function of each layer are systematically verified. In particular, by incorporating n-type ultralow leakage IGZO field-effect transistor (FET) for write transistor and p-type high-current CNT-FET for read, this unique hybrid-polarity 2T0C design achieves a decent retention and desirably large read currents. It also helps enhance the effective sensing window and, more importantly, resolve the charge injection issue via counteractive coupling. To demonstrate the computational advantage of M3D-BRIC architecture, a typical high-resolution (Hi-Res) video processing task is further implemented using the YOLOv3 network for object detection. The benchmark shows that the M3D-BRIC chip with BEOL 2T0C DRAM could achieve a 48.25\times higher processing capability compared to its 2-D counterpart.
doi_str_mv 10.1109/TED.2024.3372937
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3044618691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10466489</ieee_id><sourcerecordid>3044618691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-6023aefb504e0a0f035fa9d31c351123723a97f5d2a9bb66d555fb73b1ca72453</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYnbr78RjSUsbqaVSFRaWyEmcEpTGwUkQ_e9x1Q5Mp3d6v6e7B8AjwRNCsJomi_mEYsonjAVUseAKjIgQAVKSy2swwpiESLGQ3YK7rvvyUnJOR-B3YxtbV_1nlUOG5jBuerN3uq9sA20JIzv4hdN5X_2Yk2rrqtnDePmxnUZvCVwdM1cVkCY4gvPdbAN1U8BZo2u7hzuv0YvuTOHBQzv0nkRxgzbmYN3xHtyUuu7Mw2WOwfvrIolWaL1dxtFsjXLKRY8kpkybMhOYG6xxiZkotSoYyZkghPpfmVZBKQqqVZZJWQghyixgGcl14BPYGDyfc1tnvwfT9emXHZy_sEsZ5lySUCriXfjsyp3tOmfKtHXVQbtjSnB66jf1_aanftNLvx55OiOVMeafnUvJQ8X-AJIOdCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044618691</pqid></control><display><type>article</type><title>Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Su, Yanbo ; Shi, Mingcheng ; Tang, Jianshi ; Li, Yijun ; Du, Yiwei ; An, Ran ; Li, Jiaming ; Li, Yuankun ; Yao, Jian ; Hu, Ruofei ; He, Yuan ; Xi, Yue ; Li, Qingwen ; Qiu, Song ; Zhang, Qingtian ; Pan, Liyang ; Gao, Bin ; Qian, He ; Wu, Huaqiang</creator><creatorcontrib>Su, Yanbo ; Shi, Mingcheng ; Tang, Jianshi ; Li, Yijun ; Du, Yiwei ; An, Ran ; Li, Jiaming ; Li, Yuankun ; Yao, Jian ; Hu, Ruofei ; He, Yuan ; Xi, Yue ; Li, Qingwen ; Qiu, Song ; Zhang, Qingtian ; Pan, Liyang ; Gao, Bin ; Qian, He ; Wu, Huaqiang</creatorcontrib><description>Computing-in-memory (CIM) based on analog resistive random access memory (RRAM) emerges as an energy-efficient technology for edge artificial intelligence (AI), where a large amount of ON-chip data buffer is needed to implement complex neural networks. In this work, we report a novel InGaZnOx (IGZO)/carbon nanotube (CNT) hybrid-polarity 2T0C DRAM as a backend-of-the-line (BEOL) compatible buffer, which is a monolithic 3-D (M3D) integrated with HfO2-based analog RRAM array and Si CMOS logic to demonstrate a M3D-BRIC chip. The structural integrity and proper function of each layer are systematically verified. In particular, by incorporating n-type ultralow leakage IGZO field-effect transistor (FET) for write transistor and p-type high-current CNT-FET for read, this unique hybrid-polarity 2T0C design achieves a decent retention and desirably large read currents. It also helps enhance the effective sensing window and, more importantly, resolve the charge injection issue via counteractive coupling. To demonstrate the computational advantage of M3D-BRIC architecture, a typical high-resolution (Hi-Res) video processing task is further implemented using the YOLOv3 network for object detection. The benchmark shows that the M3D-BRIC chip with BEOL 2T0C DRAM could achieve a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;48.25\times &lt;/tex-math&gt;&lt;/inline-formula&gt; higher processing capability compared to its 2-D counterpart.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3372937</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2T0C DRAM ; Artificial intelligence ; Buffers ; carbon nanotube (CNT) ; Carbon nanotubes ; Charge injection ; Common Information Model (computing) ; Computation ; Computer architecture ; Coupling ; Couplings ; Dynamic random access memory ; Field effect transistors ; Image processing ; Indium gallium zinc oxide ; InGaZnOx (IGZO) ; Microprocessors ; monolithic 3-D (M3D) integration ; Neural networks ; Object recognition ; Polarity ; Random access memory ; resistive random access memory (RRAM) ; Semiconductor devices ; Silicon ; Structural integrity ; Transistors ; Video</subject><ispartof>IEEE transactions on electron devices, 2024-05, Vol.71 (5), p.3336-3342</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-6023aefb504e0a0f035fa9d31c351123723a97f5d2a9bb66d555fb73b1ca72453</cites><orcidid>0000-0003-2732-3419 ; 0000-0001-6965-4940 ; 0000-0001-8359-7997 ; 0009-0003-2049-1433 ; 0000-0002-2417-983X ; 0000-0001-5027-7938 ; 0000-0001-8369-0067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10466489$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10466489$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Su, Yanbo</creatorcontrib><creatorcontrib>Shi, Mingcheng</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Li, Yijun</creatorcontrib><creatorcontrib>Du, Yiwei</creatorcontrib><creatorcontrib>An, Ran</creatorcontrib><creatorcontrib>Li, Jiaming</creatorcontrib><creatorcontrib>Li, Yuankun</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Hu, Ruofei</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Xi, Yue</creatorcontrib><creatorcontrib>Li, Qingwen</creatorcontrib><creatorcontrib>Qiu, Song</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Pan, Liyang</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Qian, He</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><title>Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Computing-in-memory (CIM) based on analog resistive random access memory (RRAM) emerges as an energy-efficient technology for edge artificial intelligence (AI), where a large amount of ON-chip data buffer is needed to implement complex neural networks. In this work, we report a novel InGaZnOx (IGZO)/carbon nanotube (CNT) hybrid-polarity 2T0C DRAM as a backend-of-the-line (BEOL) compatible buffer, which is a monolithic 3-D (M3D) integrated with HfO2-based analog RRAM array and Si CMOS logic to demonstrate a M3D-BRIC chip. The structural integrity and proper function of each layer are systematically verified. In particular, by incorporating n-type ultralow leakage IGZO field-effect transistor (FET) for write transistor and p-type high-current CNT-FET for read, this unique hybrid-polarity 2T0C design achieves a decent retention and desirably large read currents. It also helps enhance the effective sensing window and, more importantly, resolve the charge injection issue via counteractive coupling. To demonstrate the computational advantage of M3D-BRIC architecture, a typical high-resolution (Hi-Res) video processing task is further implemented using the YOLOv3 network for object detection. The benchmark shows that the M3D-BRIC chip with BEOL 2T0C DRAM could achieve a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;48.25\times &lt;/tex-math&gt;&lt;/inline-formula&gt; higher processing capability compared to its 2-D counterpart.</description><subject>2T0C DRAM</subject><subject>Artificial intelligence</subject><subject>Buffers</subject><subject>carbon nanotube (CNT)</subject><subject>Carbon nanotubes</subject><subject>Charge injection</subject><subject>Common Information Model (computing)</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Dynamic random access memory</subject><subject>Field effect transistors</subject><subject>Image processing</subject><subject>Indium gallium zinc oxide</subject><subject>InGaZnOx (IGZO)</subject><subject>Microprocessors</subject><subject>monolithic 3-D (M3D) integration</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Polarity</subject><subject>Random access memory</subject><subject>resistive random access memory (RRAM)</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Structural integrity</subject><subject>Transistors</subject><subject>Video</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYnbr78RjSUsbqaVSFRaWyEmcEpTGwUkQ_e9x1Q5Mp3d6v6e7B8AjwRNCsJomi_mEYsonjAVUseAKjIgQAVKSy2swwpiESLGQ3YK7rvvyUnJOR-B3YxtbV_1nlUOG5jBuerN3uq9sA20JIzv4hdN5X_2Yk2rrqtnDePmxnUZvCVwdM1cVkCY4gvPdbAN1U8BZo2u7hzuv0YvuTOHBQzv0nkRxgzbmYN3xHtyUuu7Mw2WOwfvrIolWaL1dxtFsjXLKRY8kpkybMhOYG6xxiZkotSoYyZkghPpfmVZBKQqqVZZJWQghyixgGcl14BPYGDyfc1tnvwfT9emXHZy_sEsZ5lySUCriXfjsyp3tOmfKtHXVQbtjSnB66jf1_aanftNLvx55OiOVMeafnUvJQ8X-AJIOdCQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Su, Yanbo</creator><creator>Shi, Mingcheng</creator><creator>Tang, Jianshi</creator><creator>Li, Yijun</creator><creator>Du, Yiwei</creator><creator>An, Ran</creator><creator>Li, Jiaming</creator><creator>Li, Yuankun</creator><creator>Yao, Jian</creator><creator>Hu, Ruofei</creator><creator>He, Yuan</creator><creator>Xi, Yue</creator><creator>Li, Qingwen</creator><creator>Qiu, Song</creator><creator>Zhang, Qingtian</creator><creator>Pan, Liyang</creator><creator>Gao, Bin</creator><creator>Qian, He</creator><creator>Wu, Huaqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2732-3419</orcidid><orcidid>https://orcid.org/0000-0001-6965-4940</orcidid><orcidid>https://orcid.org/0000-0001-8359-7997</orcidid><orcidid>https://orcid.org/0009-0003-2049-1433</orcidid><orcidid>https://orcid.org/0000-0002-2417-983X</orcidid><orcidid>https://orcid.org/0000-0001-5027-7938</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid></search><sort><creationdate>20240501</creationdate><title>Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory</title><author>Su, Yanbo ; Shi, Mingcheng ; Tang, Jianshi ; Li, Yijun ; Du, Yiwei ; An, Ran ; Li, Jiaming ; Li, Yuankun ; Yao, Jian ; Hu, Ruofei ; He, Yuan ; Xi, Yue ; Li, Qingwen ; Qiu, Song ; Zhang, Qingtian ; Pan, Liyang ; Gao, Bin ; Qian, He ; Wu, Huaqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-6023aefb504e0a0f035fa9d31c351123723a97f5d2a9bb66d555fb73b1ca72453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2T0C DRAM</topic><topic>Artificial intelligence</topic><topic>Buffers</topic><topic>carbon nanotube (CNT)</topic><topic>Carbon nanotubes</topic><topic>Charge injection</topic><topic>Common Information Model (computing)</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Dynamic random access memory</topic><topic>Field effect transistors</topic><topic>Image processing</topic><topic>Indium gallium zinc oxide</topic><topic>InGaZnOx (IGZO)</topic><topic>Microprocessors</topic><topic>monolithic 3-D (M3D) integration</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Polarity</topic><topic>Random access memory</topic><topic>resistive random access memory (RRAM)</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Structural integrity</topic><topic>Transistors</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Yanbo</creatorcontrib><creatorcontrib>Shi, Mingcheng</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Li, Yijun</creatorcontrib><creatorcontrib>Du, Yiwei</creatorcontrib><creatorcontrib>An, Ran</creatorcontrib><creatorcontrib>Li, Jiaming</creatorcontrib><creatorcontrib>Li, Yuankun</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Hu, Ruofei</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Xi, Yue</creatorcontrib><creatorcontrib>Li, Qingwen</creatorcontrib><creatorcontrib>Qiu, Song</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Pan, Liyang</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Qian, He</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Su, Yanbo</au><au>Shi, Mingcheng</au><au>Tang, Jianshi</au><au>Li, Yijun</au><au>Du, Yiwei</au><au>An, Ran</au><au>Li, Jiaming</au><au>Li, Yuankun</au><au>Yao, Jian</au><au>Hu, Ruofei</au><au>He, Yuan</au><au>Xi, Yue</au><au>Li, Qingwen</au><au>Qiu, Song</au><au>Zhang, Qingtian</au><au>Pan, Liyang</au><au>Gao, Bin</au><au>Qian, He</au><au>Wu, Huaqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>71</volume><issue>5</issue><spage>3336</spage><epage>3342</epage><pages>3336-3342</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Computing-in-memory (CIM) based on analog resistive random access memory (RRAM) emerges as an energy-efficient technology for edge artificial intelligence (AI), where a large amount of ON-chip data buffer is needed to implement complex neural networks. In this work, we report a novel InGaZnOx (IGZO)/carbon nanotube (CNT) hybrid-polarity 2T0C DRAM as a backend-of-the-line (BEOL) compatible buffer, which is a monolithic 3-D (M3D) integrated with HfO2-based analog RRAM array and Si CMOS logic to demonstrate a M3D-BRIC chip. The structural integrity and proper function of each layer are systematically verified. In particular, by incorporating n-type ultralow leakage IGZO field-effect transistor (FET) for write transistor and p-type high-current CNT-FET for read, this unique hybrid-polarity 2T0C design achieves a decent retention and desirably large read currents. It also helps enhance the effective sensing window and, more importantly, resolve the charge injection issue via counteractive coupling. To demonstrate the computational advantage of M3D-BRIC architecture, a typical high-resolution (Hi-Res) video processing task is further implemented using the YOLOv3 network for object detection. The benchmark shows that the M3D-BRIC chip with BEOL 2T0C DRAM could achieve a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;48.25\times &lt;/tex-math&gt;&lt;/inline-formula&gt; higher processing capability compared to its 2-D counterpart.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3372937</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2732-3419</orcidid><orcidid>https://orcid.org/0000-0001-6965-4940</orcidid><orcidid>https://orcid.org/0000-0001-8359-7997</orcidid><orcidid>https://orcid.org/0009-0003-2049-1433</orcidid><orcidid>https://orcid.org/0000-0002-2417-983X</orcidid><orcidid>https://orcid.org/0000-0001-5027-7938</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2024-05, Vol.71 (5), p.3336-3342
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_3044618691
source IEEE Electronic Library (IEL)
subjects 2T0C DRAM
Artificial intelligence
Buffers
carbon nanotube (CNT)
Carbon nanotubes
Charge injection
Common Information Model (computing)
Computation
Computer architecture
Coupling
Couplings
Dynamic random access memory
Field effect transistors
Image processing
Indium gallium zinc oxide
InGaZnOx (IGZO)
Microprocessors
monolithic 3-D (M3D) integration
Neural networks
Object recognition
Polarity
Random access memory
resistive random access memory (RRAM)
Semiconductor devices
Silicon
Structural integrity
Transistors
Video
title Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%203-D%20Integration%20of%20Counteractive%20Coupling%20IGZO/CNT%20Hybrid%202T0C%20DRAM%20and%20Analog%20RRAM-Based%20Computing-In-Memory&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Su,%20Yanbo&rft.date=2024-05-01&rft.volume=71&rft.issue=5&rft.spage=3336&rft.epage=3342&rft.pages=3336-3342&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3372937&rft_dat=%3Cproquest_RIE%3E3044618691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044618691&rft_id=info:pmid/&rft_ieee_id=10466489&rfr_iscdi=true