Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory
Computing-in-memory (CIM) based on analog resistive random access memory (RRAM) emerges as an energy-efficient technology for edge artificial intelligence (AI), where a large amount of ON-chip data buffer is needed to implement complex neural networks. In this work, we report a novel InGaZnOx (IGZO)...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-05, Vol.71 (5), p.3336-3342 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3342 |
---|---|
container_issue | 5 |
container_start_page | 3336 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Su, Yanbo Shi, Mingcheng Tang, Jianshi Li, Yijun Du, Yiwei An, Ran Li, Jiaming Li, Yuankun Yao, Jian Hu, Ruofei He, Yuan Xi, Yue Li, Qingwen Qiu, Song Zhang, Qingtian Pan, Liyang Gao, Bin Qian, He Wu, Huaqiang |
description | Computing-in-memory (CIM) based on analog resistive random access memory (RRAM) emerges as an energy-efficient technology for edge artificial intelligence (AI), where a large amount of ON-chip data buffer is needed to implement complex neural networks. In this work, we report a novel InGaZnOx (IGZO)/carbon nanotube (CNT) hybrid-polarity 2T0C DRAM as a backend-of-the-line (BEOL) compatible buffer, which is a monolithic 3-D (M3D) integrated with HfO2-based analog RRAM array and Si CMOS logic to demonstrate a M3D-BRIC chip. The structural integrity and proper function of each layer are systematically verified. In particular, by incorporating n-type ultralow leakage IGZO field-effect transistor (FET) for write transistor and p-type high-current CNT-FET for read, this unique hybrid-polarity 2T0C design achieves a decent retention and desirably large read currents. It also helps enhance the effective sensing window and, more importantly, resolve the charge injection issue via counteractive coupling. To demonstrate the computational advantage of M3D-BRIC architecture, a typical high-resolution (Hi-Res) video processing task is further implemented using the YOLOv3 network for object detection. The benchmark shows that the M3D-BRIC chip with BEOL 2T0C DRAM could achieve a 48.25\times higher processing capability compared to its 2-D counterpart. |
doi_str_mv | 10.1109/TED.2024.3372937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3044618691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10466489</ieee_id><sourcerecordid>3044618691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-6023aefb504e0a0f035fa9d31c351123723a97f5d2a9bb66d555fb73b1ca72453</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYnbr78RjSUsbqaVSFRaWyEmcEpTGwUkQ_e9x1Q5Mp3d6v6e7B8AjwRNCsJomi_mEYsonjAVUseAKjIgQAVKSy2swwpiESLGQ3YK7rvvyUnJOR-B3YxtbV_1nlUOG5jBuerN3uq9sA20JIzv4hdN5X_2Yk2rrqtnDePmxnUZvCVwdM1cVkCY4gvPdbAN1U8BZo2u7hzuv0YvuTOHBQzv0nkRxgzbmYN3xHtyUuu7Mw2WOwfvrIolWaL1dxtFsjXLKRY8kpkybMhOYG6xxiZkotSoYyZkghPpfmVZBKQqqVZZJWQghyixgGcl14BPYGDyfc1tnvwfT9emXHZy_sEsZ5lySUCriXfjsyp3tOmfKtHXVQbtjSnB66jf1_aanftNLvx55OiOVMeafnUvJQ8X-AJIOdCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044618691</pqid></control><display><type>article</type><title>Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Su, Yanbo ; Shi, Mingcheng ; Tang, Jianshi ; Li, Yijun ; Du, Yiwei ; An, Ran ; Li, Jiaming ; Li, Yuankun ; Yao, Jian ; Hu, Ruofei ; He, Yuan ; Xi, Yue ; Li, Qingwen ; Qiu, Song ; Zhang, Qingtian ; Pan, Liyang ; Gao, Bin ; Qian, He ; Wu, Huaqiang</creator><creatorcontrib>Su, Yanbo ; Shi, Mingcheng ; Tang, Jianshi ; Li, Yijun ; Du, Yiwei ; An, Ran ; Li, Jiaming ; Li, Yuankun ; Yao, Jian ; Hu, Ruofei ; He, Yuan ; Xi, Yue ; Li, Qingwen ; Qiu, Song ; Zhang, Qingtian ; Pan, Liyang ; Gao, Bin ; Qian, He ; Wu, Huaqiang</creatorcontrib><description>Computing-in-memory (CIM) based on analog resistive random access memory (RRAM) emerges as an energy-efficient technology for edge artificial intelligence (AI), where a large amount of ON-chip data buffer is needed to implement complex neural networks. In this work, we report a novel InGaZnOx (IGZO)/carbon nanotube (CNT) hybrid-polarity 2T0C DRAM as a backend-of-the-line (BEOL) compatible buffer, which is a monolithic 3-D (M3D) integrated with HfO2-based analog RRAM array and Si CMOS logic to demonstrate a M3D-BRIC chip. The structural integrity and proper function of each layer are systematically verified. In particular, by incorporating n-type ultralow leakage IGZO field-effect transistor (FET) for write transistor and p-type high-current CNT-FET for read, this unique hybrid-polarity 2T0C design achieves a decent retention and desirably large read currents. It also helps enhance the effective sensing window and, more importantly, resolve the charge injection issue via counteractive coupling. To demonstrate the computational advantage of M3D-BRIC architecture, a typical high-resolution (Hi-Res) video processing task is further implemented using the YOLOv3 network for object detection. The benchmark shows that the M3D-BRIC chip with BEOL 2T0C DRAM could achieve a <inline-formula> <tex-math notation="LaTeX">48.25\times </tex-math></inline-formula> higher processing capability compared to its 2-D counterpart.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3372937</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2T0C DRAM ; Artificial intelligence ; Buffers ; carbon nanotube (CNT) ; Carbon nanotubes ; Charge injection ; Common Information Model (computing) ; Computation ; Computer architecture ; Coupling ; Couplings ; Dynamic random access memory ; Field effect transistors ; Image processing ; Indium gallium zinc oxide ; InGaZnOx (IGZO) ; Microprocessors ; monolithic 3-D (M3D) integration ; Neural networks ; Object recognition ; Polarity ; Random access memory ; resistive random access memory (RRAM) ; Semiconductor devices ; Silicon ; Structural integrity ; Transistors ; Video</subject><ispartof>IEEE transactions on electron devices, 2024-05, Vol.71 (5), p.3336-3342</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-6023aefb504e0a0f035fa9d31c351123723a97f5d2a9bb66d555fb73b1ca72453</cites><orcidid>0000-0003-2732-3419 ; 0000-0001-6965-4940 ; 0000-0001-8359-7997 ; 0009-0003-2049-1433 ; 0000-0002-2417-983X ; 0000-0001-5027-7938 ; 0000-0001-8369-0067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10466489$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10466489$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Su, Yanbo</creatorcontrib><creatorcontrib>Shi, Mingcheng</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Li, Yijun</creatorcontrib><creatorcontrib>Du, Yiwei</creatorcontrib><creatorcontrib>An, Ran</creatorcontrib><creatorcontrib>Li, Jiaming</creatorcontrib><creatorcontrib>Li, Yuankun</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Hu, Ruofei</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Xi, Yue</creatorcontrib><creatorcontrib>Li, Qingwen</creatorcontrib><creatorcontrib>Qiu, Song</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Pan, Liyang</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Qian, He</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><title>Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Computing-in-memory (CIM) based on analog resistive random access memory (RRAM) emerges as an energy-efficient technology for edge artificial intelligence (AI), where a large amount of ON-chip data buffer is needed to implement complex neural networks. In this work, we report a novel InGaZnOx (IGZO)/carbon nanotube (CNT) hybrid-polarity 2T0C DRAM as a backend-of-the-line (BEOL) compatible buffer, which is a monolithic 3-D (M3D) integrated with HfO2-based analog RRAM array and Si CMOS logic to demonstrate a M3D-BRIC chip. The structural integrity and proper function of each layer are systematically verified. In particular, by incorporating n-type ultralow leakage IGZO field-effect transistor (FET) for write transistor and p-type high-current CNT-FET for read, this unique hybrid-polarity 2T0C design achieves a decent retention and desirably large read currents. It also helps enhance the effective sensing window and, more importantly, resolve the charge injection issue via counteractive coupling. To demonstrate the computational advantage of M3D-BRIC architecture, a typical high-resolution (Hi-Res) video processing task is further implemented using the YOLOv3 network for object detection. The benchmark shows that the M3D-BRIC chip with BEOL 2T0C DRAM could achieve a <inline-formula> <tex-math notation="LaTeX">48.25\times </tex-math></inline-formula> higher processing capability compared to its 2-D counterpart.</description><subject>2T0C DRAM</subject><subject>Artificial intelligence</subject><subject>Buffers</subject><subject>carbon nanotube (CNT)</subject><subject>Carbon nanotubes</subject><subject>Charge injection</subject><subject>Common Information Model (computing)</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Dynamic random access memory</subject><subject>Field effect transistors</subject><subject>Image processing</subject><subject>Indium gallium zinc oxide</subject><subject>InGaZnOx (IGZO)</subject><subject>Microprocessors</subject><subject>monolithic 3-D (M3D) integration</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Polarity</subject><subject>Random access memory</subject><subject>resistive random access memory (RRAM)</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Structural integrity</subject><subject>Transistors</subject><subject>Video</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYnbr78RjSUsbqaVSFRaWyEmcEpTGwUkQ_e9x1Q5Mp3d6v6e7B8AjwRNCsJomi_mEYsonjAVUseAKjIgQAVKSy2swwpiESLGQ3YK7rvvyUnJOR-B3YxtbV_1nlUOG5jBuerN3uq9sA20JIzv4hdN5X_2Yk2rrqtnDePmxnUZvCVwdM1cVkCY4gvPdbAN1U8BZo2u7hzuv0YvuTOHBQzv0nkRxgzbmYN3xHtyUuu7Mw2WOwfvrIolWaL1dxtFsjXLKRY8kpkybMhOYG6xxiZkotSoYyZkghPpfmVZBKQqqVZZJWQghyixgGcl14BPYGDyfc1tnvwfT9emXHZy_sEsZ5lySUCriXfjsyp3tOmfKtHXVQbtjSnB66jf1_aanftNLvx55OiOVMeafnUvJQ8X-AJIOdCQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Su, Yanbo</creator><creator>Shi, Mingcheng</creator><creator>Tang, Jianshi</creator><creator>Li, Yijun</creator><creator>Du, Yiwei</creator><creator>An, Ran</creator><creator>Li, Jiaming</creator><creator>Li, Yuankun</creator><creator>Yao, Jian</creator><creator>Hu, Ruofei</creator><creator>He, Yuan</creator><creator>Xi, Yue</creator><creator>Li, Qingwen</creator><creator>Qiu, Song</creator><creator>Zhang, Qingtian</creator><creator>Pan, Liyang</creator><creator>Gao, Bin</creator><creator>Qian, He</creator><creator>Wu, Huaqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2732-3419</orcidid><orcidid>https://orcid.org/0000-0001-6965-4940</orcidid><orcidid>https://orcid.org/0000-0001-8359-7997</orcidid><orcidid>https://orcid.org/0009-0003-2049-1433</orcidid><orcidid>https://orcid.org/0000-0002-2417-983X</orcidid><orcidid>https://orcid.org/0000-0001-5027-7938</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid></search><sort><creationdate>20240501</creationdate><title>Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory</title><author>Su, Yanbo ; Shi, Mingcheng ; Tang, Jianshi ; Li, Yijun ; Du, Yiwei ; An, Ran ; Li, Jiaming ; Li, Yuankun ; Yao, Jian ; Hu, Ruofei ; He, Yuan ; Xi, Yue ; Li, Qingwen ; Qiu, Song ; Zhang, Qingtian ; Pan, Liyang ; Gao, Bin ; Qian, He ; Wu, Huaqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-6023aefb504e0a0f035fa9d31c351123723a97f5d2a9bb66d555fb73b1ca72453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2T0C DRAM</topic><topic>Artificial intelligence</topic><topic>Buffers</topic><topic>carbon nanotube (CNT)</topic><topic>Carbon nanotubes</topic><topic>Charge injection</topic><topic>Common Information Model (computing)</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Dynamic random access memory</topic><topic>Field effect transistors</topic><topic>Image processing</topic><topic>Indium gallium zinc oxide</topic><topic>InGaZnOx (IGZO)</topic><topic>Microprocessors</topic><topic>monolithic 3-D (M3D) integration</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Polarity</topic><topic>Random access memory</topic><topic>resistive random access memory (RRAM)</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Structural integrity</topic><topic>Transistors</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Yanbo</creatorcontrib><creatorcontrib>Shi, Mingcheng</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Li, Yijun</creatorcontrib><creatorcontrib>Du, Yiwei</creatorcontrib><creatorcontrib>An, Ran</creatorcontrib><creatorcontrib>Li, Jiaming</creatorcontrib><creatorcontrib>Li, Yuankun</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Hu, Ruofei</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Xi, Yue</creatorcontrib><creatorcontrib>Li, Qingwen</creatorcontrib><creatorcontrib>Qiu, Song</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Pan, Liyang</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Qian, He</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Su, Yanbo</au><au>Shi, Mingcheng</au><au>Tang, Jianshi</au><au>Li, Yijun</au><au>Du, Yiwei</au><au>An, Ran</au><au>Li, Jiaming</au><au>Li, Yuankun</au><au>Yao, Jian</au><au>Hu, Ruofei</au><au>He, Yuan</au><au>Xi, Yue</au><au>Li, Qingwen</au><au>Qiu, Song</au><au>Zhang, Qingtian</au><au>Pan, Liyang</au><au>Gao, Bin</au><au>Qian, He</au><au>Wu, Huaqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>71</volume><issue>5</issue><spage>3336</spage><epage>3342</epage><pages>3336-3342</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Computing-in-memory (CIM) based on analog resistive random access memory (RRAM) emerges as an energy-efficient technology for edge artificial intelligence (AI), where a large amount of ON-chip data buffer is needed to implement complex neural networks. In this work, we report a novel InGaZnOx (IGZO)/carbon nanotube (CNT) hybrid-polarity 2T0C DRAM as a backend-of-the-line (BEOL) compatible buffer, which is a monolithic 3-D (M3D) integrated with HfO2-based analog RRAM array and Si CMOS logic to demonstrate a M3D-BRIC chip. The structural integrity and proper function of each layer are systematically verified. In particular, by incorporating n-type ultralow leakage IGZO field-effect transistor (FET) for write transistor and p-type high-current CNT-FET for read, this unique hybrid-polarity 2T0C design achieves a decent retention and desirably large read currents. It also helps enhance the effective sensing window and, more importantly, resolve the charge injection issue via counteractive coupling. To demonstrate the computational advantage of M3D-BRIC architecture, a typical high-resolution (Hi-Res) video processing task is further implemented using the YOLOv3 network for object detection. The benchmark shows that the M3D-BRIC chip with BEOL 2T0C DRAM could achieve a <inline-formula> <tex-math notation="LaTeX">48.25\times </tex-math></inline-formula> higher processing capability compared to its 2-D counterpart.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3372937</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2732-3419</orcidid><orcidid>https://orcid.org/0000-0001-6965-4940</orcidid><orcidid>https://orcid.org/0000-0001-8359-7997</orcidid><orcidid>https://orcid.org/0009-0003-2049-1433</orcidid><orcidid>https://orcid.org/0000-0002-2417-983X</orcidid><orcidid>https://orcid.org/0000-0001-5027-7938</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-05, Vol.71 (5), p.3336-3342 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_3044618691 |
source | IEEE Electronic Library (IEL) |
subjects | 2T0C DRAM Artificial intelligence Buffers carbon nanotube (CNT) Carbon nanotubes Charge injection Common Information Model (computing) Computation Computer architecture Coupling Couplings Dynamic random access memory Field effect transistors Image processing Indium gallium zinc oxide InGaZnOx (IGZO) Microprocessors monolithic 3-D (M3D) integration Neural networks Object recognition Polarity Random access memory resistive random access memory (RRAM) Semiconductor devices Silicon Structural integrity Transistors Video |
title | Monolithic 3-D Integration of Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM and Analog RRAM-Based Computing-In-Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%203-D%20Integration%20of%20Counteractive%20Coupling%20IGZO/CNT%20Hybrid%202T0C%20DRAM%20and%20Analog%20RRAM-Based%20Computing-In-Memory&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Su,%20Yanbo&rft.date=2024-05-01&rft.volume=71&rft.issue=5&rft.spage=3336&rft.epage=3342&rft.pages=3336-3342&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3372937&rft_dat=%3Cproquest_RIE%3E3044618691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044618691&rft_id=info:pmid/&rft_ieee_id=10466489&rfr_iscdi=true |