Competitive coordination assembly of light-degradable gold nanocluster-intercalated metal organic frameworks for photoresponsive drug release
On-demand controlled drug release holds great promise for cancer therapy. Light-degradable nanocarriers have gained increasing attention for designing controllable drug delivery systems owing to their spatiotemporally controllable properties. Herein, a highly luminescent and light-degradable nanocar...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-04, Vol.12 (16), p.418-428 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On-demand controlled drug release holds great promise for cancer therapy. Light-degradable nanocarriers have gained increasing attention for designing controllable drug delivery systems owing to their spatiotemporally controllable properties. Herein, a highly luminescent and light-degradable nanocarrier is constructed by intercalating glutathione-capped gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8)
via
competitive coordination assembly, named AuNC@ZIF-8, for light-triggered drug release. Glutathione-capped AuNCs and 2-methylimidazole (MIm) competitively coordinated with Zn
2+
to form AuNC@ZIF-8 using a one step process in an aqueous solution. Specifically, the obtained AuNC@ZIF-8 has a high quantum yield of 52.96% and displays a distinctive property of photolysis. Competitive coordination interactions within AuNC@ZIF-8 were evidenced by X-ray diffraction and X-ray photoelectron spectroscopy, in which Zn
2+
strongly coordinated with the N of MIm and weakly coordinated with the carboxyl/amino groups in the glutathione of AuNCs. Under light irradiation, the Au-S bond in AuNCs breaks, enhancing the coordination ability between carboxyl/amino groups and Zn
2+
. This collapses the crystal structure of AuNC@ZIF-8 and causes subsequent fluorescence quenching. Additionally, AuNC@ZIF-8 is successfully employed as a luminescent nanocarrier of anticancer drugs to form drug-AuNC@ZIF-8, in which three typical anticancer drugs are selected due to different coordination interactions. The obtained smart drug-AuNC@ZIF-8 can be effectively internalized into HeLa cells and degraded in response to blue light, with negligible dark cytotoxicity and high light cytotoxicity. This study highlights the crucial role of competitive coordination interactions in synthesizing functional materials with fluorescence efficiency and photolytic properties.
A gold nanocluster-intercalated zeolitic imidazolate framework-8 (AuNC@ZIF-8) as a luminescent nanocarrier with a high quantum yield (52.96%) and photolysis property is synthesized
via
coordination assembly for light-triggered drug release in cells. |
---|---|
ISSN: | 2050-750X 2050-7518 |
DOI: | 10.1039/d3tb03012a |