Combining geometric constraint and redox non-innocence within an ambiphilic PBiP pincer ligand
The synthesis of the first pincer ligand featuring a strictly T-shaped group 15 element and its coordination behaviour towards transition metals is described. The platform is itself derived from a trianionic redox non-innocent NNN scaffold. In addition to providing a rigid coordination environment t...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2024-04, Vol.15 (16), p.636-643 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The synthesis of the first pincer ligand featuring a strictly T-shaped group 15 element and its coordination behaviour towards transition metals is described. The platform is itself derived from a trianionic redox non-innocent NNN scaffold. In addition to providing a rigid coordination environment to constrain a Bi centre in a T-shaped geometry to manipulate its frontier molecular orbital constitution, the NNN chelate displays highly covalent bonding towards the geometrically constrained Bi centre. The formation of intriguing ambiphilic Bi-M bonding interactions is demonstrated upon formation of a pincer complex as well as a multimetallic cluster. All compounds are comprehensively characterised by spectroscopic methods including X-ray Absorption Near Edge Structure (XANES) spectroscopy and complemented by DFT calculations.
The first pincer ligand featuring a strictly T-shaped pnictogen donor moiety was synthesised. The PBiP ligand's redox activity facilitates unprecedented ambiphilic bonding of the Bi centre with transition metals through the Bi(6p) orbital. |
---|---|
ISSN: | 2041-6520 2041-6539 |
DOI: | 10.1039/d4sc00197d |