On Rational Spline Solutions of Differential Equations with Singularities in the Coefficients of the Derivatives

For one generalization of the Riemann differential equation, we obtain sufficient conditions for the approximability by twice continuously differentiable rational interpolation spline functions. To solve the corresponding boundary value problem numerically, a tridiagonal system of linear algebraic e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2024-02, Vol.115 (1-2), p.66-76
Hauptverfasser: Magomedova, V. G., Ramazanov, A.-R. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For one generalization of the Riemann differential equation, we obtain sufficient conditions for the approximability by twice continuously differentiable rational interpolation spline functions. To solve the corresponding boundary value problem numerically, a tridiagonal system of linear algebraic equations is constructed and conditions on the coefficients of the differential equation are found guaranteeing the uniqueness of the solution of such Estimates of the deviation of the discrete solution of the boundary value problem from the exact solution on a grid are presented.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434624010061