Development of Tat-fused drug binding protein to improve anti-cancer effect of mammalian target of rapamycin inhibitors

The mammalian target of rapamycin (mTOR) is known to regulate cell growth, protein stability and cell-cycle progression, and many human tumors result from the dysregulation of mTOR signaling. Although various mTOR inhibitors have been developed, effective delivery systems are still needed to enhance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioprocess engineering 2024-04, Vol.29 (2), p.303-312
Hauptverfasser: Lim, Su Yeon, Kim, Sugyeong, Kim, Hongbin, Kim, Hyun-Ouk, Ha, Suk-Jin, Lim, Kwang Suk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mammalian target of rapamycin (mTOR) is known to regulate cell growth, protein stability and cell-cycle progression, and many human tumors result from the dysregulation of mTOR signaling. Although various mTOR inhibitors have been developed, effective delivery systems are still needed to enhance the anti-cancer effects of mTOR inhibitors. In this study, we developed the Tat-fused mTOR inhibitor binding domain (Tat-MBD/TMBD) for the enhancement of the anti-cancer effect of mTOR inhibitors, due to the improvement of intracellular uptake. A TMBD/mTOR inhibitors complex spontaneously formed by biological affinity between MBD and mTOR inhibitors without chemical conjugation and modification. We constructed that a recombinant fusion protein expression vector composed of Tat (protein transduction domain) and mTOR inhibitor-binding domain (Tat-MBD) to deliver the mTOR inhibitors. The MBD spontaneously bound with mTOR inhibitors including sirolimus, everolimus, and temsirolimus, resulting in the formation of a TMBD/mTOR inhibitors complex. The enhancement of the delivery efficacy of mTOR inhibitors into various breast cancer cells was confirmed and improved anti-cancer efficacy was observed. We demonstrated the effective delivery systems of mTOR inhibitors without chemical conjugation of mTOR inhibitors.
ISSN:1226-8372
1976-3816
DOI:10.1007/s12257-024-00015-7