An Ultra-weak Local Discontinuous Galerkin Method with Generalized Numerical Fluxes for the KdV–Burgers–Kuramoto Equation
In this paper, we study an ultra-weak local discontinuous Galerkin (UWLDG) method for the KdV–Burgers–Kuramoto (KBK) type equation. While the standard UWLDG method is a powerful tool for efficiently solving high order equations, it faces challenges when applied to equations involving multiple spatia...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2024-06, Vol.99 (3), p.65, Article 65 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study an ultra-weak local discontinuous Galerkin (UWLDG) method for the KdV–Burgers–Kuramoto (KBK) type equation. While the standard UWLDG method is a powerful tool for efficiently solving high order equations, it faces challenges when applied to equations involving multiple spatial derivatives. We adopt a novel approach to discretize lower order spatial derivatives, enhancing the versatility of the UWLDG method. Additionally, we adopt generalized numerical fluxes to enhance the flexibility and extendibility of the UWLDG scheme. We introduce a class of global projections with multiple parameters to analyze the properties of these generalized numerical fluxes. With the aid of the special discretization approach and the global projections, we establish both stability and optimal error estimates of proposed method. The validity of our theoretical findings is demonstrated through numerical experiments. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-024-02528-y |