Erasure-tolerance scheme for the surface codes on neutral atom quantum computers

Neutral atom arrays manipulated with optical tweezers are promising candidates for fault-tolerant quantum computers due to their advantageous properties, such as scalability, long coherence times, and optical accessibility for communication. A significant challenge to overcome is the presence of non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Kobayashi, Fumiyoshi, Nagayama, Shota
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neutral atom arrays manipulated with optical tweezers are promising candidates for fault-tolerant quantum computers due to their advantageous properties, such as scalability, long coherence times, and optical accessibility for communication. A significant challenge to overcome is the presence of non-Pauli errors, specifically erasure errors and leakage errors. Previous work has shown that leakage errors can be converted into erasure errors; however, these (converted) erasure errors continuously occur and accumulate over time. Prior proposals have involved transporting atoms directly from a reservoir area--where spare atoms are stored--to the computational area--where computation and error correction are performed--to correct atom loss. While coherent transport is promising, it may not address all challenges--particularly its effectiveness in dense arrays and alternative methods must help. In this study, we evaluate the effects of erasure errors on the surface code using circuit-based Monte Carlo simulations that incorporate depolarizing and accumulated erasure errors. We propose a new scheme to mitigate this problem: a k-shift erasure recovery scheme. Our scheme employs code deformation to repeatedly transfer the logical qubit from an imperfect array with accumulated erased qubits to a perfect array, thereby tolerating many accumulated erasures. Furthermore, our scheme corrects erasure errors in the atom arrays while the logical qubits are evacuated from the area being corrected; thus, manipulating optical tweezers for erasure correction does not disturb the qubits that constitute the logical data. Our scheme provides a practical pathway for neutral atom quantum computers to achieve feasible fault tolerance.
ISSN:2331-8422