Treatment of Leather Industry Wastewater Using Coagulation, Ultraviolet/Persulfate Processing and Nanofiltration for Water Recovery
This study investigated water recovery with the treatment of leather industry processes wastewater (washing, pickling, and degreasing units) using coagulation, ultraviolet/persulfate (UV/PS) treatment, and nanofiltration processes. Coagulation studies were carried out using alum as the coagulant, an...
Gespeichert in:
Veröffentlicht in: | Journal of water chemistry and technology 2024-04, Vol.46 (2), p.176-185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigated water recovery with the treatment of leather industry processes wastewater (washing, pickling, and degreasing units) using coagulation, ultraviolet/persulfate (UV/PS) treatment, and nanofiltration processes. Coagulation studies were carried out using alum as the coagulant, and the highest chemical oxygen demand (COD) removal efficiency was obtained at pH 7 for all the wastewater. The highest COD and total organic carbon (TOC) removal were 80.9 and 50.5% in the wastewater washing unit (
: 8 g/L, pH 7) and 76.5 and 96.1% in the wastewater degreasing unit (
: 16 g/L, pH 6) using UV/PS oxidation, respectively. High COD and TOC removal could not be achieved with UV/PS oxidation in the wastewater pickling unit. In the studies performed with NP030 nanofiltration membrane after UV/PS oxidation, the highest permeability and COD removal was achieved at pH 7 under 4 × 10
5
Pa pressure in wastewater washing and degreasing units. After 75 min of nanofiltration at pH 7 in washing and degreasing units, the total filtrate amount was 39.8 and 42.3 L/m
2
h, respectively. COD concentration in the wastewater washing unit decreased from 4434 to 138 mg/L, while it decreased from 5833 to 212 mg/L in the wastewater degreasing unit with coagulation, UV/PS processing, and nanofiltration. As a result, the treatment of leather industry wastewater through separate streams with coagulation, UV/PS, and nanofiltration, washing, and degreasing unit wastewater provides very high COD removal. Also, it has been shown impossible to treat the pickling unit wastewater by UV/PS oxidation. |
---|---|
ISSN: | 1063-455X 1934-936X |
DOI: | 10.3103/S1063455X2402005X |