Potential Pathogenicity and Genetic Characteristics of a Live-Attenuated Classical Swine Fever Virus Vaccine Derivative Variant

Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious disease affecting pigs and causing massive pig production losses with severe global economic recession. The immunization of live-attenuated vaccines is still one of the key measures to CSFV management in endemic countrie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transboundary and emerging diseases 2024-01, Vol.2024 (1)
Hauptverfasser: Guo, Zhenhua, Xing, Guangxu, Wang, Leyi, Jin, Qianyue, Lu, Qingxia, Zhang, Gaiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious disease affecting pigs and causing massive pig production losses with severe global economic recession. The immunization of live-attenuated vaccines is still one of the key measures to CSFV management in endemic countries. However, there are also strong controversies about the usage of live-attenuated vaccines, particularly in pregnant sows and young pigs, such as in Europe, where domestic pigs are routinely not vaccinated until severe outbreaks occur. Here, we report a CSF outbreak in a pig farm in China, which affected more than 90% of the delivery sows and led to ∼45% birth loss. Surprisingly, phylogenetic analysis showed that the CSFV isolate (named CSFV/HeNLY2022, GenBank No. OR195698) was clustered into subgenotype 1.1a, closely together with the live-attenuated vaccine strains. Further genomic analysis also revealed that the isolate CSFV/HeNLY2022 shared the highest nucleotide identity of 99.7% with the C/HVRI vaccine strain (C-strain, GenBank No. AY805221). Moreover, compared to the C/HVRI strain, a total of eight amino acid mutations, distributed in Erns (H436thY and S476thR), E1 (T502thI and P581thT), E2 (M979thK and A1061thS), NS5A (A2980thT), and NS5B (I3818thM), were characterized in the CSFV/HeNLY2022 isolate. Our results suggested that the CSF outbreak was most likely caused by the live-attenuated CSFV vaccine or its derivative. It raises concern that the unscientific application of CSFV vaccines could potentially lead to CSFV spread in pigs. It is needed to perform a more rigorous evaluation of the safety of the C-strain-derived vaccines in combination with other different live-attenuated vaccines.
ISSN:1865-1674
1865-1682
DOI:10.1155/2024/7244445