Vibration attenuation performance of wind turbine tower using a prestressed tuned mass damper under seismic excitation

With the rapid development of large megawatt wind turbines, the operation environment of wind turbine towers (WTTs) has become increasingly complex. In particular, seismic excitation can create a resonance response and cause excessive vibration of the WTT. To investigate the vibration attenuation pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earthquake Engineering and Engineering Vibration 2024-04, Vol.23 (2), p.511-524
Hauptverfasser: Lei, Zhenbo, Gang, Liu, Wang, Hui, Hui, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rapid development of large megawatt wind turbines, the operation environment of wind turbine towers (WTTs) has become increasingly complex. In particular, seismic excitation can create a resonance response and cause excessive vibration of the WTT. To investigate the vibration attenuation performance of the WTT under seismic excitations, a novel passive vibration control device, called a prestressed tuned mass damper (PS-TMD), is presented in this study. First, a mathematical model is established based on structural dynamics under seismic excitation. Then, the mathematical analytical expression of the dynamic coefficient is deduced, and the parameter design method is obtained by system tuning optimization. Next, based on a theoretical analysis and parameter design, the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration. Finally, the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper (PTMD) and the novel PS-TMD device, and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD. In addition, the PS-TMD avoids the nonlinear effect due to the large oscillation angle, and has the potential to dissipate hysteretic energy under seismic excitation.
ISSN:1671-3664
1993-503X
DOI:10.1007/s11803-024-2252-x