Entropy extension

We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional analysis and its applications 2006-10, Vol.40 (4), p.298-303, Article 65
Hauptverfasser: Litvak, A. E., Milman, V. D., Pajor, A., Tomczak-Jaegermann, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 4
container_start_page 298
container_title Functional analysis and its applications
container_volume 40
creator Litvak, A. E.
Milman, V. D.
Pajor, A.
Tomczak-Jaegermann, N.
description We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of ℓ∞. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections.
doi_str_mv 10.1007/s10688-006-0046-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3041898156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041898156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dce7fbd075bc4d040b5155419fac1fdff3089dfb736bd7d8db9fb7a036b5790b3</originalsourceid><addsrcrecordid>eNp9j81LAzEQxYMouNQePHoTPEdnzPdRSrVCwYueQ7LZwJa6uyYp2P_elPXkwYFhePDePH6E3CDcI4B6yAhSawog63JJ9RlpUChGNdfinDTAFKdoDFySZc47qCPkoxTYkOv1UNI4HW-779INuR-HK3IR3T53y9-7IB_P6_fVhm7fXl5XT1vaMpSFhrZT0QdQwrc8AAcvUAiOJroWY4iRgTYhesWkDyro4E0VDqoUyoBnC3I3_53S-HXocrG78ZCGWmkZcNRGo5DVhbOrTWPOqYt2Sv2nS0eLYE_wdoa3Fd6e4K2uGfUn0_bFlcpWkuv3_yR_AHZZXOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041898156</pqid></control><display><type>article</type><title>Entropy extension</title><source>Math-Net.Ru (free access)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Litvak, A. E. ; Milman, V. D. ; Pajor, A. ; Tomczak-Jaegermann, N.</creator><creatorcontrib>Litvak, A. E. ; Milman, V. D. ; Pajor, A. ; Tomczak-Jaegermann, N.</creatorcontrib><description>We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of ℓ∞. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections.</description><identifier>ISSN: 0374-1990</identifier><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1007/s10688-006-0046-8</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Entropy ; Estimates ; Theorems</subject><ispartof>Functional analysis and its applications, 2006-10, Vol.40 (4), p.298-303, Article 65</ispartof><rights>Springer Science+Business Media, Inc. 2006.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dce7fbd075bc4d040b5155419fac1fdff3089dfb736bd7d8db9fb7a036b5790b3</citedby><cites>FETCH-LOGICAL-c316t-dce7fbd075bc4d040b5155419fac1fdff3089dfb736bd7d8db9fb7a036b5790b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Litvak, A. E.</creatorcontrib><creatorcontrib>Milman, V. D.</creatorcontrib><creatorcontrib>Pajor, A.</creatorcontrib><creatorcontrib>Tomczak-Jaegermann, N.</creatorcontrib><title>Entropy extension</title><title>Functional analysis and its applications</title><description>We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of ℓ∞. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections.</description><subject>Entropy</subject><subject>Estimates</subject><subject>Theorems</subject><issn>0374-1990</issn><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9j81LAzEQxYMouNQePHoTPEdnzPdRSrVCwYueQ7LZwJa6uyYp2P_elPXkwYFhePDePH6E3CDcI4B6yAhSawog63JJ9RlpUChGNdfinDTAFKdoDFySZc47qCPkoxTYkOv1UNI4HW-779INuR-HK3IR3T53y9-7IB_P6_fVhm7fXl5XT1vaMpSFhrZT0QdQwrc8AAcvUAiOJroWY4iRgTYhesWkDyro4E0VDqoUyoBnC3I3_53S-HXocrG78ZCGWmkZcNRGo5DVhbOrTWPOqYt2Sv2nS0eLYE_wdoa3Fd6e4K2uGfUn0_bFlcpWkuv3_yR_AHZZXOI</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Litvak, A. E.</creator><creator>Milman, V. D.</creator><creator>Pajor, A.</creator><creator>Tomczak-Jaegermann, N.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061001</creationdate><title>Entropy extension</title><author>Litvak, A. E. ; Milman, V. D. ; Pajor, A. ; Tomczak-Jaegermann, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dce7fbd075bc4d040b5155419fac1fdff3089dfb736bd7d8db9fb7a036b5790b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Entropy</topic><topic>Estimates</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Litvak, A. E.</creatorcontrib><creatorcontrib>Milman, V. D.</creatorcontrib><creatorcontrib>Pajor, A.</creatorcontrib><creatorcontrib>Tomczak-Jaegermann, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Litvak, A. E.</au><au>Milman, V. D.</au><au>Pajor, A.</au><au>Tomczak-Jaegermann, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy extension</atitle><jtitle>Functional analysis and its applications</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>40</volume><issue>4</issue><spage>298</spage><epage>303</epage><pages>298-303</pages><artnum>65</artnum><issn>0374-1990</issn><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of ℓ∞. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10688-006-0046-8</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0374-1990
ispartof Functional analysis and its applications, 2006-10, Vol.40 (4), p.298-303, Article 65
issn 0374-1990
0016-2663
1573-8485
language eng
recordid cdi_proquest_journals_3041898156
source Math-Net.Ru (free access); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Entropy
Estimates
Theorems
title Entropy extension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20extension&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Litvak,%20A.%20E.&rft.date=2006-10-01&rft.volume=40&rft.issue=4&rft.spage=298&rft.epage=303&rft.pages=298-303&rft.artnum=65&rft.issn=0374-1990&rft.eissn=1573-8485&rft_id=info:doi/10.1007/s10688-006-0046-8&rft_dat=%3Cproquest_cross%3E3041898156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041898156&rft_id=info:pmid/&rfr_iscdi=true