Entropy extension
We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the exten...
Gespeichert in:
Veröffentlicht in: | Functional analysis and its applications 2006-10, Vol.40 (4), p.298-303, Article 65 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 4 |
container_start_page | 298 |
container_title | Functional analysis and its applications |
container_volume | 40 |
creator | Litvak, A. E. Milman, V. D. Pajor, A. Tomczak-Jaegermann, N. |
description | We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of ℓ∞. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections. |
doi_str_mv | 10.1007/s10688-006-0046-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3041898156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041898156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dce7fbd075bc4d040b5155419fac1fdff3089dfb736bd7d8db9fb7a036b5790b3</originalsourceid><addsrcrecordid>eNp9j81LAzEQxYMouNQePHoTPEdnzPdRSrVCwYueQ7LZwJa6uyYp2P_elPXkwYFhePDePH6E3CDcI4B6yAhSawog63JJ9RlpUChGNdfinDTAFKdoDFySZc47qCPkoxTYkOv1UNI4HW-779INuR-HK3IR3T53y9-7IB_P6_fVhm7fXl5XT1vaMpSFhrZT0QdQwrc8AAcvUAiOJroWY4iRgTYhesWkDyro4E0VDqoUyoBnC3I3_53S-HXocrG78ZCGWmkZcNRGo5DVhbOrTWPOqYt2Sv2nS0eLYE_wdoa3Fd6e4K2uGfUn0_bFlcpWkuv3_yR_AHZZXOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041898156</pqid></control><display><type>article</type><title>Entropy extension</title><source>Math-Net.Ru (free access)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Litvak, A. E. ; Milman, V. D. ; Pajor, A. ; Tomczak-Jaegermann, N.</creator><creatorcontrib>Litvak, A. E. ; Milman, V. D. ; Pajor, A. ; Tomczak-Jaegermann, N.</creatorcontrib><description>We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of ℓ∞. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections.</description><identifier>ISSN: 0374-1990</identifier><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1007/s10688-006-0046-8</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Entropy ; Estimates ; Theorems</subject><ispartof>Functional analysis and its applications, 2006-10, Vol.40 (4), p.298-303, Article 65</ispartof><rights>Springer Science+Business Media, Inc. 2006.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dce7fbd075bc4d040b5155419fac1fdff3089dfb736bd7d8db9fb7a036b5790b3</citedby><cites>FETCH-LOGICAL-c316t-dce7fbd075bc4d040b5155419fac1fdff3089dfb736bd7d8db9fb7a036b5790b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Litvak, A. E.</creatorcontrib><creatorcontrib>Milman, V. D.</creatorcontrib><creatorcontrib>Pajor, A.</creatorcontrib><creatorcontrib>Tomczak-Jaegermann, N.</creatorcontrib><title>Entropy extension</title><title>Functional analysis and its applications</title><description>We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of ℓ∞. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections.</description><subject>Entropy</subject><subject>Estimates</subject><subject>Theorems</subject><issn>0374-1990</issn><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9j81LAzEQxYMouNQePHoTPEdnzPdRSrVCwYueQ7LZwJa6uyYp2P_elPXkwYFhePDePH6E3CDcI4B6yAhSawog63JJ9RlpUChGNdfinDTAFKdoDFySZc47qCPkoxTYkOv1UNI4HW-779INuR-HK3IR3T53y9-7IB_P6_fVhm7fXl5XT1vaMpSFhrZT0QdQwrc8AAcvUAiOJroWY4iRgTYhesWkDyro4E0VDqoUyoBnC3I3_53S-HXocrG78ZCGWmkZcNRGo5DVhbOrTWPOqYt2Sv2nS0eLYE_wdoa3Fd6e4K2uGfUn0_bFlcpWkuv3_yR_AHZZXOI</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Litvak, A. E.</creator><creator>Milman, V. D.</creator><creator>Pajor, A.</creator><creator>Tomczak-Jaegermann, N.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061001</creationdate><title>Entropy extension</title><author>Litvak, A. E. ; Milman, V. D. ; Pajor, A. ; Tomczak-Jaegermann, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dce7fbd075bc4d040b5155419fac1fdff3089dfb736bd7d8db9fb7a036b5790b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Entropy</topic><topic>Estimates</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Litvak, A. E.</creatorcontrib><creatorcontrib>Milman, V. D.</creatorcontrib><creatorcontrib>Pajor, A.</creatorcontrib><creatorcontrib>Tomczak-Jaegermann, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Litvak, A. E.</au><au>Milman, V. D.</au><au>Pajor, A.</au><au>Tomczak-Jaegermann, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy extension</atitle><jtitle>Functional analysis and its applications</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>40</volume><issue>4</issue><spage>298</spage><epage>303</epage><pages>298-303</pages><artnum>65</artnum><issn>0374-1990</issn><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of ℓ∞. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10688-006-0046-8</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0374-1990 |
ispartof | Functional analysis and its applications, 2006-10, Vol.40 (4), p.298-303, Article 65 |
issn | 0374-1990 0016-2663 1573-8485 |
language | eng |
recordid | cdi_proquest_journals_3041898156 |
source | Math-Net.Ru (free access); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Entropy Estimates Theorems |
title | Entropy extension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20extension&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Litvak,%20A.%20E.&rft.date=2006-10-01&rft.volume=40&rft.issue=4&rft.spage=298&rft.epage=303&rft.pages=298-303&rft.artnum=65&rft.issn=0374-1990&rft.eissn=1573-8485&rft_id=info:doi/10.1007/s10688-006-0046-8&rft_dat=%3Cproquest_cross%3E3041898156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041898156&rft_id=info:pmid/&rfr_iscdi=true |