Entropy extension

We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional analysis and its applications 2006-10, Vol.40 (4), p.298-303, Article 65
Hauptverfasser: Litvak, A. E., Milman, V. D., Pajor, A., Tomczak-Jaegermann, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove an “entropy extension-lifting theorem.” It consists of two inequalities for the covering numbers of two symmetric convex bodies. The first inequality, which can be called an “entropy extension theorem,” provides estimates in terms of entropy of sections and should be compared with the extension property of ℓ∞. The second one, which can be called an “entropy lifting theorem,” provides estimates in terms of entropies of projections.
ISSN:0374-1990
0016-2663
1573-8485
DOI:10.1007/s10688-006-0046-8