AAR:Attention Remodulation for Weakly Supervised Semantic Segmentation

Weakly Supervised Semantic Segmentation is a crucial task in computer vision. However, existing methods that utilize Class Activation Maps (CAMs) with classification tasks can only identify a small part of the region. To address this limitation, we propose a novel Attention Activation Remodulation (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2024-05, Vol.80 (7), p.9096-9114
Hauptverfasser: Lin, Yu-e, Li, Houguo, Liang, Xingzhu, Li, Mengfan, Liu, Huilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Weakly Supervised Semantic Segmentation is a crucial task in computer vision. However, existing methods that utilize Class Activation Maps (CAMs) with classification tasks can only identify a small part of the region. To address this limitation, we propose a novel Attention Activation Remodulation (AAR) scheme that leverages traditional CAMs and the remodulation branch to obtain weighted CAMs for recalibrated supervision. The AAR scheme re-arranges important features’ distribution from the channel and space perspectives, which regulates segmentation-oriented activation responses. In addition, we propose a Feature Pixel Extraction Module (FPEM) that utilizes contextual information to improve pixel prediction. Furthermore, the proposed scheme can be combined with other methods to improve overall performance. Extensive experiments on the PASCAL VOC 2012 dataset demonstrate the effectiveness of the AAR mechanism and FPEM module.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-023-05786-z