Automatic Calibration of Environmentally Installed 3D-LiDAR Group Used for Localization of Construction Vehicles
Research and development efforts have been undertaken to develop a method for accurately localizing construction vehicles in various environments using multiple 3D-LiDARs installed in the work environment. In this approach, it is important to calibrate the installed positions and orientations of the...
Gespeichert in:
Veröffentlicht in: | Journal of robotics and mechatronics 2024-04, Vol.36 (2), p.320-333 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Research and development efforts have been undertaken to develop a method for accurately localizing construction vehicles in various environments using multiple 3D-LiDARs installed in the work environment. In this approach, it is important to calibrate the installed positions and orientations of the multiple LiDARs as accurately as possible to achieve high-accuracy localization. Currently, calibration is performed manually, which results in accuracy variance depending on the operator. Furthermore, manual calibration becomes more time consuming as the number of installed LiDARs increases. Conventional automatic calibration methods require the use of dedicated land markers because stable features are difficult to acquire in civil engineering sites in which the environment is altered by work. This paper proposes an automatic calibration method that calibrates the positions and orientations of 3D-LiDARs installed in the field using multiple construction vehicles on the construction site as land markers. To validate the proposed method, we conducted calibration experiments on a group of 3D-LiDARs installed on uneven ground using actual construction vehicles, and verified the calibration accuracy using a newly proposed accuracy evaluation formula. The results showed that the proposed method can perform sufficiently accurate calibration without the use of dedicated land markers in civil engineering sites, which increase costs and make features difficult to acquire. |
---|---|
ISSN: | 0915-3942 1883-8049 |
DOI: | 10.20965/jrm.2024.p0320 |