On the qualitative and quantitative analysis for two fourth–order difference equations
Our aim in the present paper is to derive the closed-form solutions for the two fourth-order difference equations x n + 1 = x n - 2 x n - 3 a x n + b x n - 3 , n ≥ 0 , and x n + 1 = x n - 2 x n - 3 - a x n + b x n - 3 , n ≥ 0 , with positive arbitrary real parameters a , b and arbitrary real initia...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2024-04, Vol.70 (2), p.1419-1439 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our aim in the present paper is to derive the closed-form solutions for the two fourth-order difference equations
x
n
+
1
=
x
n
-
2
x
n
-
3
a
x
n
+
b
x
n
-
3
,
n
≥
0
,
and
x
n
+
1
=
x
n
-
2
x
n
-
3
-
a
x
n
+
b
x
n
-
3
,
n
≥
0
,
with positive arbitrary real parameters
a
,
b
and arbitrary real initial conditions, as well as study the qualitative behaviors for each. For the first equation, we show that every admissible solution converges to a period-3 solution when
a
+
b
=
1
. For the second equation, we show that every admissible solution converges to zero if
b
>
2
when
b
2
≥
4
a
. When
b
2
<
4
a
, we show the existence of periodic solutions under certain conditions. We introduce the forbidden sets as well as provide some illustrative examples for the above-mentioned equations. |
---|---|
ISSN: | 1598-5865 1865-2085 |
DOI: | 10.1007/s12190-024-02010-w |