A High-Order Conservative Cut Finite Element Method for Problems in Time-Dependent Domains

A mass-conservative high-order unfitted finite element method for convection-diffusion equations in evolving domains is proposed. The space-time method presented in [P. Hansbo, M. G. Larson, S. Zahedi, Comput. Methods Appl. Mech. Engrg. 307 (2016)] is extended to naturally achieve mass conservation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Myrbäck, Sebastian, Zahedi, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mass-conservative high-order unfitted finite element method for convection-diffusion equations in evolving domains is proposed. The space-time method presented in [P. Hansbo, M. G. Larson, S. Zahedi, Comput. Methods Appl. Mech. Engrg. 307 (2016)] is extended to naturally achieve mass conservation by utilizing Reynold's transport theorem. Furthermore, by partitioning the time-dependent domain into macroelements, a more efficient stabilization procedure for the cut finite element method in time-dependent domains is presented. Numerical experiments illustrate that the method fulfills mass conservation, attains high-order convergence, and the condition number of the resulting system matrix is controlled while sparsity is increased. Problems in bulk domains as well as coupled bulk-surface problems are considered.
ISSN:2331-8422