A High-Order Conservative Cut Finite Element Method for Problems in Time-Dependent Domains
A mass-conservative high-order unfitted finite element method for convection-diffusion equations in evolving domains is proposed. The space-time method presented in [P. Hansbo, M. G. Larson, S. Zahedi, Comput. Methods Appl. Mech. Engrg. 307 (2016)] is extended to naturally achieve mass conservation...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A mass-conservative high-order unfitted finite element method for convection-diffusion equations in evolving domains is proposed. The space-time method presented in [P. Hansbo, M. G. Larson, S. Zahedi, Comput. Methods Appl. Mech. Engrg. 307 (2016)] is extended to naturally achieve mass conservation by utilizing Reynold's transport theorem. Furthermore, by partitioning the time-dependent domain into macroelements, a more efficient stabilization procedure for the cut finite element method in time-dependent domains is presented. Numerical experiments illustrate that the method fulfills mass conservation, attains high-order convergence, and the condition number of the resulting system matrix is controlled while sparsity is increased. Problems in bulk domains as well as coupled bulk-surface problems are considered. |
---|---|
ISSN: | 2331-8422 |