Sharp Bounds on the Approximation Rates, Metric Entropy, and n-Widths of Shallow Neural Networks

In this article, we study approximation properties of the variation spaces corresponding to shallow neural networks with a variety of activation functions. We introduce two main tools for estimating the metric entropy, approximation rates, and n -widths of these spaces. First, we introduce the notio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2024-04, Vol.24 (2), p.481-537
Hauptverfasser: Siegel, Jonathan W., Xu, Jinchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we study approximation properties of the variation spaces corresponding to shallow neural networks with a variety of activation functions. We introduce two main tools for estimating the metric entropy, approximation rates, and n -widths of these spaces. First, we introduce the notion of a smoothly parameterized dictionary and give upper bounds on the nonlinear approximation rates, metric entropy, and n -widths of their absolute convex hull. The upper bounds depend upon the order of smoothness of the parameterization. This result is applied to dictionaries of ridge functions corresponding to shallow neural networks, and they improve upon existing results in many cases. Next, we provide a method for lower bounding the metric entropy and n -widths of variation spaces which contain certain classes of ridge functions. This result gives sharp lower bounds on the L 2 -approximation rates, metric entropy, and n -widths for variation spaces corresponding to neural networks with a range of important activation functions, including ReLU k activation functions and sigmoidal activation functions with bounded variation.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-022-09595-3