Some Sharp Landau–Kolmogorov–Nagy-Type Inequalities in Sobolev Spaces of Multivariate Functions
For a function f from the Sobolev space W 1 ,p ( C ) , where C ⊂ ℝ d is an open convex cone, we establish a sharp inequality estimating ∥ f ∥ L ∞ via the L p -norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the L ∞ -norm o...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2024-03, Vol.75 (10), p.1525-1532 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a function
f
from the Sobolev space
W
1
,p
(
C
)
,
where
C
⊂ ℝ
d
is an open convex cone, we establish a sharp inequality estimating ∥
f
∥
L
∞
via the
L
p
-norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the
L
∞
-norm of the Radon–Nikodym derivative of a charge defined on Lebesgue measurable subsets of
C
via the
L
p
-norm of the gradient of this derivative and the seminorm of the charge. In the case where
C
= ℝ
+
m
× ℝ
d−m
,
0 ≤
m
≤
d,
we obtain inequalities estimating the
L
∞
-norm of a mixed derivative of the function
f
:
C →
ℝ via its
L
∞
-norm and the
L
p
-norm of the gradient of mixed derivative of this function. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-024-02275-1 |