Some Sharp Landau–Kolmogorov–Nagy-Type Inequalities in Sobolev Spaces of Multivariate Functions

For a function f from the Sobolev space W 1 ,p ( C ) , where C ⊂ ℝ d is an open convex cone, we establish a sharp inequality estimating ∥ f ∥ L ∞ via the L p -norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the L ∞ -norm o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2024-03, Vol.75 (10), p.1525-1532
Hauptverfasser: Babenko, Vladyslav, Babenko, Vira, Kovalenko, Oleh, Parfinovych, Nataliia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a function f from the Sobolev space W 1 ,p ( C ) , where C ⊂ ℝ d is an open convex cone, we establish a sharp inequality estimating ∥ f ∥ L ∞ via the L p -norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the L ∞ -norm of the Radon–Nikodym derivative of a charge defined on Lebesgue measurable subsets of C via the L p -norm of the gradient of this derivative and the seminorm of the charge. In the case where C = ℝ + m × ℝ d−m , 0 ≤ m ≤ d, we obtain inequalities estimating the L ∞ -norm of a mixed derivative of the function f : C → ℝ via its L ∞ -norm and the L p -norm of the gradient of mixed derivative of this function.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-024-02275-1