Sobolev inequalities in manifolds with asymptotically nonnegative curvature

Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2024-05, Vol.63 (4), Article 110
Hauptverfasser: Dong, Yuxin, Lin, Hezi, Lu, Lingen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 63
creator Dong, Yuxin
Lin, Hezi
Lu, Lingen
description Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequalities generalize those given by Brendle in the case of complete Riemannian manifolds with nonnegative curvature.
doi_str_mv 10.1007/s00526-024-02688-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039886086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039886086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2d7e0b4b235051abd8857ac84ae5c157c4aa86431f3e1b0a8ba8daf3080bb55a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9XJV5s9yuIXLnhQz2HSpmuWbrObpJX991YrePMwDAPP-w48hFxSuKYA5U0EkKzIgYlxCqXy8ojMqOAsB8XlMZnBQoicFcXilJzFuAGgUjExI8-v3vjWDpnr7L7H1iVn43hkW-xc49s6Zp8ufWQYD9td8slV2LaHrPNdZ9eY3GCzqg8Dpj7Yc3LSYBvtxe-ek_f7u7flY756eXha3q7yipWQclaXFowwjEuQFE2tlCyxUgKtrKgsK4GoCsFpwy01gMqgqrHhoMAYKZHPydXUuwt-39uY9Mb3oRtfag58oVQBqhgpNlFV8DEG2-hdcFsMB01Bf0vTkzQ9StM_0nQ5hvgUiiPcrW34q_4n9QVROnED</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039886086</pqid></control><display><type>article</type><title>Sobolev inequalities in manifolds with asymptotically nonnegative curvature</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Yuxin ; Lin, Hezi ; Lu, Lingen</creator><creatorcontrib>Dong, Yuxin ; Lin, Hezi ; Lu, Lingen</creatorcontrib><description>Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequalities generalize those given by Brendle in the case of complete Riemannian manifolds with nonnegative curvature.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-024-02688-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Asymptotic properties ; Calculus of Variations and Optimal Control; Optimization ; Control ; Curvature ; Inequalities ; Manifolds (mathematics) ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Riemann manifold ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2024-05, Vol.63 (4), Article 110</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2d7e0b4b235051abd8857ac84ae5c157c4aa86431f3e1b0a8ba8daf3080bb55a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-024-02688-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-024-02688-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Dong, Yuxin</creatorcontrib><creatorcontrib>Lin, Hezi</creatorcontrib><creatorcontrib>Lu, Lingen</creatorcontrib><title>Sobolev inequalities in manifolds with asymptotically nonnegative curvature</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequalities generalize those given by Brendle in the case of complete Riemannian manifolds with nonnegative curvature.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Curvature</subject><subject>Inequalities</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9XJV5s9yuIXLnhQz2HSpmuWbrObpJX991YrePMwDAPP-w48hFxSuKYA5U0EkKzIgYlxCqXy8ojMqOAsB8XlMZnBQoicFcXilJzFuAGgUjExI8-v3vjWDpnr7L7H1iVn43hkW-xc49s6Zp8ufWQYD9td8slV2LaHrPNdZ9eY3GCzqg8Dpj7Yc3LSYBvtxe-ek_f7u7flY756eXha3q7yipWQclaXFowwjEuQFE2tlCyxUgKtrKgsK4GoCsFpwy01gMqgqrHhoMAYKZHPydXUuwt-39uY9Mb3oRtfag58oVQBqhgpNlFV8DEG2-hdcFsMB01Bf0vTkzQ9StM_0nQ5hvgUiiPcrW34q_4n9QVROnED</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Dong, Yuxin</creator><creator>Lin, Hezi</creator><creator>Lu, Lingen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240501</creationdate><title>Sobolev inequalities in manifolds with asymptotically nonnegative curvature</title><author>Dong, Yuxin ; Lin, Hezi ; Lu, Lingen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2d7e0b4b235051abd8857ac84ae5c157c4aa86431f3e1b0a8ba8daf3080bb55a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Curvature</topic><topic>Inequalities</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yuxin</creatorcontrib><creatorcontrib>Lin, Hezi</creatorcontrib><creatorcontrib>Lu, Lingen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yuxin</au><au>Lin, Hezi</au><au>Lu, Lingen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sobolev inequalities in manifolds with asymptotically nonnegative curvature</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>63</volume><issue>4</issue><artnum>110</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequalities generalize those given by Brendle in the case of complete Riemannian manifolds with nonnegative curvature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-024-02688-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2024-05, Vol.63 (4), Article 110
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_3039886086
source SpringerLink Journals - AutoHoldings
subjects Analysis
Asymptotic properties
Calculus of Variations and Optimal Control
Optimization
Control
Curvature
Inequalities
Manifolds (mathematics)
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Riemann manifold
Systems Theory
Theoretical
title Sobolev inequalities in manifolds with asymptotically nonnegative curvature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sobolev%20inequalities%20in%20manifolds%20with%20asymptotically%20nonnegative%20curvature&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Dong,%20Yuxin&rft.date=2024-05-01&rft.volume=63&rft.issue=4&rft.artnum=110&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-024-02688-7&rft_dat=%3Cproquest_cross%3E3039886086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039886086&rft_id=info:pmid/&rfr_iscdi=true