Sobolev inequalities in manifolds with asymptotically nonnegative curvature
Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequ...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2024-05, Vol.63 (4), Article 110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Calculus of variations and partial differential equations |
container_volume | 63 |
creator | Dong, Yuxin Lin, Hezi Lu, Lingen |
description | Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequalities generalize those given by Brendle in the case of complete Riemannian manifolds with nonnegative curvature. |
doi_str_mv | 10.1007/s00526-024-02688-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039886086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039886086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2d7e0b4b235051abd8857ac84ae5c157c4aa86431f3e1b0a8ba8daf3080bb55a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9XJV5s9yuIXLnhQz2HSpmuWbrObpJX991YrePMwDAPP-w48hFxSuKYA5U0EkKzIgYlxCqXy8ojMqOAsB8XlMZnBQoicFcXilJzFuAGgUjExI8-v3vjWDpnr7L7H1iVn43hkW-xc49s6Zp8ufWQYD9td8slV2LaHrPNdZ9eY3GCzqg8Dpj7Yc3LSYBvtxe-ek_f7u7flY756eXha3q7yipWQclaXFowwjEuQFE2tlCyxUgKtrKgsK4GoCsFpwy01gMqgqrHhoMAYKZHPydXUuwt-39uY9Mb3oRtfag58oVQBqhgpNlFV8DEG2-hdcFsMB01Bf0vTkzQ9StM_0nQ5hvgUiiPcrW34q_4n9QVROnED</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039886086</pqid></control><display><type>article</type><title>Sobolev inequalities in manifolds with asymptotically nonnegative curvature</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Yuxin ; Lin, Hezi ; Lu, Lingen</creator><creatorcontrib>Dong, Yuxin ; Lin, Hezi ; Lu, Lingen</creatorcontrib><description>Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequalities generalize those given by Brendle in the case of complete Riemannian manifolds with nonnegative curvature.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-024-02688-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Asymptotic properties ; Calculus of Variations and Optimal Control; Optimization ; Control ; Curvature ; Inequalities ; Manifolds (mathematics) ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Riemann manifold ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2024-05, Vol.63 (4), Article 110</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2d7e0b4b235051abd8857ac84ae5c157c4aa86431f3e1b0a8ba8daf3080bb55a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-024-02688-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-024-02688-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Dong, Yuxin</creatorcontrib><creatorcontrib>Lin, Hezi</creatorcontrib><creatorcontrib>Lu, Lingen</creatorcontrib><title>Sobolev inequalities in manifolds with asymptotically nonnegative curvature</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequalities generalize those given by Brendle in the case of complete Riemannian manifolds with nonnegative curvature.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Curvature</subject><subject>Inequalities</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9XJV5s9yuIXLnhQz2HSpmuWbrObpJX991YrePMwDAPP-w48hFxSuKYA5U0EkKzIgYlxCqXy8ojMqOAsB8XlMZnBQoicFcXilJzFuAGgUjExI8-v3vjWDpnr7L7H1iVn43hkW-xc49s6Zp8ufWQYD9td8slV2LaHrPNdZ9eY3GCzqg8Dpj7Yc3LSYBvtxe-ek_f7u7flY756eXha3q7yipWQclaXFowwjEuQFE2tlCyxUgKtrKgsK4GoCsFpwy01gMqgqrHhoMAYKZHPydXUuwt-39uY9Mb3oRtfag58oVQBqhgpNlFV8DEG2-hdcFsMB01Bf0vTkzQ9StM_0nQ5hvgUiiPcrW34q_4n9QVROnED</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Dong, Yuxin</creator><creator>Lin, Hezi</creator><creator>Lu, Lingen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240501</creationdate><title>Sobolev inequalities in manifolds with asymptotically nonnegative curvature</title><author>Dong, Yuxin ; Lin, Hezi ; Lu, Lingen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2d7e0b4b235051abd8857ac84ae5c157c4aa86431f3e1b0a8ba8daf3080bb55a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Curvature</topic><topic>Inequalities</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yuxin</creatorcontrib><creatorcontrib>Lin, Hezi</creatorcontrib><creatorcontrib>Lu, Lingen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yuxin</au><au>Lin, Hezi</au><au>Lu, Lingen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sobolev inequalities in manifolds with asymptotically nonnegative curvature</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>63</volume><issue>4</issue><artnum>110</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequalities generalize those given by Brendle in the case of complete Riemannian manifolds with nonnegative curvature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-024-02688-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2024-05, Vol.63 (4), Article 110 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_3039886086 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Asymptotic properties Calculus of Variations and Optimal Control Optimization Control Curvature Inequalities Manifolds (mathematics) Mathematical and Computational Physics Mathematics Mathematics and Statistics Riemann manifold Systems Theory Theoretical |
title | Sobolev inequalities in manifolds with asymptotically nonnegative curvature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sobolev%20inequalities%20in%20manifolds%20with%20asymptotically%20nonnegative%20curvature&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Dong,%20Yuxin&rft.date=2024-05-01&rft.volume=63&rft.issue=4&rft.artnum=110&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-024-02688-7&rft_dat=%3Cproquest_cross%3E3039886086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039886086&rft_id=info:pmid/&rfr_iscdi=true |