Sobolev inequalities in manifolds with asymptotically nonnegative curvature
Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequ...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2024-05, Vol.63 (4), Article 110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact domains and submanifolds in a complete Riemannian manifold with asymptotically nonnegative Ricci/sectional curvature. These inequalities generalize those given by Brendle in the case of complete Riemannian manifolds with nonnegative curvature. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-024-02688-7 |