The parabolic algebra revisited

The parabolic algebra A p is the weakly closed operator algebra on L 2 ( ℝ ) generated by the unitary semigroup of right translations and the unitary semigroup of multiplication by the analytic exponential functions e i λ x , λ ≥ 0 . It is reflexive, with an invariant subspace lattice Lat A p which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2024-03, Vol.259 (2), p.559-587
Hauptverfasser: Kastis, Eleftherios, Power, Stephen C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The parabolic algebra A p is the weakly closed operator algebra on L 2 ( ℝ ) generated by the unitary semigroup of right translations and the unitary semigroup of multiplication by the analytic exponential functions e i λ x , λ ≥ 0 . It is reflexive, with an invariant subspace lattice Lat A p which is naturally homeomorphic to the unit disc (Katavolos and Power, 1997). The structure of Lat A p is used to classify strongly irreducible isometric representations of the partial Weyl commutation relations. A formal generalisation of Arveson’s notion of a synthetic commutative subspace lattice is given for general subspace lattices, and it is shown that Lat A p is not synthetic relative to the H ∞ ( ℝ ) subalgebra of A p . Also, various new operator algebras, derived from isometric representations and from compact perturbations of A p , are defined and identified.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-023-2550-4