TD-graphene: Theoretical prediction of a high-performance anode material for sodium-ion batteries with intrinsic metallicity, high capacity, and fast ion mobility

The utilization of pristine graphene as an anode material in sodium-ion batteries (SIBs) is limited by its inherent chemical inertness toward Na-ions. To address this issue, we propose a two-dimensional carbon allotrope (named as TD-graphene) by assembling tricyclo[4.4.1.11,6]dodecane (C12H20) skele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-04, Vol.124 (16)
Hauptverfasser: Zou, Ru-Feng, Wu, Zhi-Hui, Ma, Tian-Ci, Zheng, Xiao-Hong, Ye, Xiao-Juan, Lin, He, Liu, Chun-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The utilization of pristine graphene as an anode material in sodium-ion batteries (SIBs) is limited by its inherent chemical inertness toward Na-ions. To address this issue, we propose a two-dimensional carbon allotrope (named as TD-graphene) by assembling tricyclo[4.4.1.11,6]dodecane (C12H20) skeleton. The topological non-hexagonal feature of C12H20 increases the degree of local carbon-ring disorder and introduces additional electron-deficient regions on the surface, thus enhancing the adsorption capability of Na. TD-graphene demonstrates exceptional stability across the energetic, thermodynamic, dynamic, and mechanical aspects. As a promising anode for SIBs, it exhibits an intrinsic metallicity, an ultra-high storage capacity (1487.58 mA h g−1), a low diffusion barrier (0.20 eV), a low average open-circuit voltage (0.33 V), and a small lattice expansion (0.6%). The presence of solvents with high dielectric constants improves the adsorption and migration capability of Na. Furthermore, taking into account the limitation of single-layer materials in practical applications, we employ h-BN as a promising substrate for TD-graphene, which can boost the Na adsorption and diffusion performance. These results render TD-graphene as a promising high-performance anode material for SIBs.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0203292